Abstract

We have demonstrated an all-optical technique for reversible in-plane and out-of-plane switching of nematic liquid crystal molecules in few micron thick films. Our method leverages the highly localized electric fields (“hot spots”) and plasmonic heating that are generated in the near-field region of densely packed gold nanoparticle layers optically excited on-resonance with the localized surface plasmon absorption. Using polarized microscopy and transmission measurements, we observe this switching from homeotropic to planar over a temperature range starting at room temperature to just below the isotropic transition, and at on-resonance excitation intensity less than 0.03 W/cm2. In addition, we controllably vary the in-plane directionality of the liquid crystal molecules in the planar state by altering the linear polarization of the incident excitation. Using discrete dipole simulations and control measurements, we establish spectral selectivity in this new and interesting perspective for photonic application using low light power.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical switching in a nematic liquid crystal twist cell

Jessica Merlin, Elysa Chao, Mark Winkler, Kenneth D. Singer, Platon Korneychuk, and Yuri Reznikov
Opt. Express 13(13) 5024-5029 (2005)

Large-area bulk self-assembly of plasmonic nanorods in nematic liquid crystal via surface-mediated alignment

Qingkun Liu, Nan Wang, Pengxin Chen, Yuan Zhang, and Sailing He
Opt. Mater. Express 3(11) 1918-1924 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Choudhary, G. Singh, and A. M. Biradar, “Advances in gold nanoparticle-liquid crystal composites,” Nanoscale 6(14), 7743–7756 (2014).
    [Crossref] [PubMed]
  2. R. Bitar, G. Agez, and M. Mitov, “Cholesteric liquid crystal self-organization of gold nanoparticles,” Soft Matter 7(18), 8198–8206 (2011).
    [Crossref]
  3. S. Kumar, S. K. Pal, P. S. Kumar, and V. Lakshminarayanan, “Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix,” Soft Matter 3(7), 896–900 (2007).
    [Crossref]
  4. H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and Alignment Effects of Mixed Monolayer Cyanobiphenyl Liquid-Crystal-Capped Gold Nanoparticles in Nematic Cyanobiphenyl Liquid Crystal Hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
    [Crossref] [PubMed]
  5. A. Demortière, S. Buathong, B. P. Pichon, P. Panissod, D. Guillon, S. Bégin-Colin, and B. Donnio, “Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles,” Small 6(12), 1341–1346 (2010).
    [Crossref] [PubMed]
  6. Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
    [Crossref]
  7. X. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D Ordered Gold Strings by Coating Nanoparticles with Mesogens,” Adv. Mater. 21(17), 1746–1750 (2009).
    [Crossref]
  8. A. Rodarte, R. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C. 1(35), 5527–5532 (2013).
    [Crossref]
  9. H. Qi and T. Hegmann, “Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles,” J. Mater. Chem. 16(43), 4197–4205 (2006).
    [Crossref]
  10. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
    [Crossref] [PubMed]
  11. P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix,” Nano Lett. 5(10), 1978–1981 (2005).
    [Crossref] [PubMed]
  12. O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21(2), 1633–1638 (2013).
    [Crossref] [PubMed]
  13. M. Decker, C. Kremers, A. Minovich, I. Staude, A. E. Miroshnichenko, D. Chigrin, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Electro-optical switching by liquid-crystal controlled metasurfaces,” Opt. Express 21(7), 8879–8885 (2013).
    [Crossref] [PubMed]
  14. L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
    [Crossref]
  15. Q. Liu, N. Wang, P. Chen, Y. Zhang, and S. He, “Large-area bulk self-assembly of plasmonic nanorods in nematic liquid crystal via surface mediated Alignment,” Opt. Mater. Express 3(11), 1918–1924 (2013).
    [Crossref]
  16. G. Gilardi, S. Xiao, N. A. Mortensen, A. d’Alessandro, and R. Beccherelli, “Plasmon resonance optical tuning based on photosensitive composite structures,” J. Opt. Soc. Am. B 31(2), 360–365 (2014).
    [Crossref]
  17. Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
    [Crossref] [PubMed]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  19. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  20. P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
    [Crossref] [PubMed]
  21. T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5(4), 265–270 (2006).
    [Crossref] [PubMed]
  22. J. Smith, J. Faucheaux, S. White, A. N. Sobh, J. Feser, P. K. Jain, and N. Sobh, “nanoDDSCAT,” (DOI:, (2015). https://nanohub.org/resources/dda .
    [Crossref]
  23. M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–626 (1996).
    [Crossref]
  24. T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995).
    [Crossref] [PubMed]
  25. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [Crossref] [PubMed]
  26. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
    [Crossref] [PubMed]

2014 (3)

A. Choudhary, G. Singh, and A. M. Biradar, “Advances in gold nanoparticle-liquid crystal composites,” Nanoscale 6(14), 7743–7756 (2014).
[Crossref] [PubMed]

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

G. Gilardi, S. Xiao, N. A. Mortensen, A. d’Alessandro, and R. Beccherelli, “Plasmon resonance optical tuning based on photosensitive composite structures,” J. Opt. Soc. Am. B 31(2), 360–365 (2014).
[Crossref]

2013 (5)

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

O. Buchnev, J. Y. Ou, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21(2), 1633–1638 (2013).
[Crossref] [PubMed]

M. Decker, C. Kremers, A. Minovich, I. Staude, A. E. Miroshnichenko, D. Chigrin, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Electro-optical switching by liquid-crystal controlled metasurfaces,” Opt. Express 21(7), 8879–8885 (2013).
[Crossref] [PubMed]

Q. Liu, N. Wang, P. Chen, Y. Zhang, and S. He, “Large-area bulk self-assembly of plasmonic nanorods in nematic liquid crystal via surface mediated Alignment,” Opt. Mater. Express 3(11), 1918–1924 (2013).
[Crossref]

A. Rodarte, R. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C. 1(35), 5527–5532 (2013).
[Crossref]

2011 (1)

R. Bitar, G. Agez, and M. Mitov, “Cholesteric liquid crystal self-organization of gold nanoparticles,” Soft Matter 7(18), 8198–8206 (2011).
[Crossref]

2010 (3)

A. Demortière, S. Buathong, B. P. Pichon, P. Panissod, D. Guillon, S. Bégin-Colin, and B. Donnio, “Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles,” Small 6(12), 1341–1346 (2010).
[Crossref] [PubMed]

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

2009 (2)

X. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D Ordered Gold Strings by Coating Nanoparticles with Mesogens,” Adv. Mater. 21(17), 1746–1750 (2009).
[Crossref]

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and Alignment Effects of Mixed Monolayer Cyanobiphenyl Liquid-Crystal-Capped Gold Nanoparticles in Nematic Cyanobiphenyl Liquid Crystal Hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[Crossref] [PubMed]

2008 (1)

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

2007 (1)

S. Kumar, S. K. Pal, P. S. Kumar, and V. Lakshminarayanan, “Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix,” Soft Matter 3(7), 896–900 (2007).
[Crossref]

2006 (4)

H. Qi and T. Hegmann, “Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles,” J. Mater. Chem. 16(43), 4197–4205 (2006).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5(4), 265–270 (2006).
[Crossref] [PubMed]

2005 (1)

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix,” Nano Lett. 5(10), 1978–1981 (2005).
[Crossref] [PubMed]

1997 (1)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1996 (1)

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–626 (1996).
[Crossref]

1995 (1)

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

Agez, G.

R. Bitar, G. Agez, and M. Mitov, “Cholesteric liquid crystal self-organization of gold nanoparticles,” Soft Matter 7(18), 8198–8206 (2011).
[Crossref]

Alsing, P. M.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix,” Nano Lett. 5(10), 1978–1981 (2005).
[Crossref] [PubMed]

Baffou, G.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Beccherelli, R.

Bégin-Colin, S.

A. Demortière, S. Buathong, B. P. Pichon, P. Panissod, D. Guillon, S. Bégin-Colin, and B. Donnio, “Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles,” Small 6(12), 1341–1346 (2010).
[Crossref] [PubMed]

Bigioni, T. P.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5(4), 265–270 (2006).
[Crossref] [PubMed]

Biradar, A. M.

A. Choudhary, G. Singh, and A. M. Biradar, “Advances in gold nanoparticle-liquid crystal composites,” Nanoscale 6(14), 7743–7756 (2014).
[Crossref] [PubMed]

Bitar, R.

R. Bitar, G. Agez, and M. Mitov, “Cholesteric liquid crystal self-organization of gold nanoparticles,” Soft Matter 7(18), 8198–8206 (2011).
[Crossref]

Buathong, S.

A. Demortière, S. Buathong, B. P. Pichon, P. Panissod, D. Guillon, S. Bégin-Colin, and B. Donnio, “Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles,” Small 6(12), 1341–1346 (2010).
[Crossref] [PubMed]

Buchnev, O.

Bunning, T.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

Burgi, T.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

Calabi, F.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

Cardimona, D. A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix,” Nano Lett. 5(10), 1978–1981 (2005).
[Crossref] [PubMed]

Chen, P.

Chigrin, D.

Chin, W. C.

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

Choudhary, A.

A. Choudhary, G. Singh, and A. M. Biradar, “Advances in gold nanoparticle-liquid crystal composites,” Nanoscale 6(14), 7743–7756 (2014).
[Crossref] [PubMed]

Cingolani, R.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

Ciuchi, F.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

Cloutier, S. G.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix,” Nano Lett. 5(10), 1978–1981 (2005).
[Crossref] [PubMed]

Corwin, E. I.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5(4), 265–270 (2006).
[Crossref] [PubMed]

Cseh, L.

X. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D Ordered Gold Strings by Coating Nanoparticles with Mesogens,” Adv. Mater. 21(17), 1746–1750 (2009).
[Crossref]

Cunningham, A.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

d’Alessandro, A.

De Sio, L.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

De Vittorio, M.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

Decker, M.

Demortière, A.

A. Demortière, S. Buathong, B. P. Pichon, P. Panissod, D. Guillon, S. Bégin-Colin, and B. Donnio, “Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles,” Small 6(12), 1341–1346 (2010).
[Crossref] [PubMed]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

Donnio, B.

A. Demortière, S. Buathong, B. P. Pichon, P. Panissod, D. Guillon, S. Bégin-Colin, and B. Donnio, “Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles,” Small 6(12), 1341–1346 (2010).
[Crossref] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

Fedotov, V. A.

Ferri, C. G. L.

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

Fowler, A. G.

X. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D Ordered Gold Strings by Coating Nanoparticles with Mesogens,” Adv. Mater. 21(17), 1746–1750 (2009).
[Crossref]

García de Abajo, F. J.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Ghosh, S.

A. Rodarte, R. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C. 1(35), 5527–5532 (2013).
[Crossref]

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

Ghosh, S. N.

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

Gilardi, G.

Guillon, D.

A. Demortière, S. Buathong, B. P. Pichon, P. Panissod, D. Guillon, S. Bégin-Colin, and B. Donnio, “Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles,” Small 6(12), 1341–1346 (2010).
[Crossref] [PubMed]

He, S.

Hegmann, T.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and Alignment Effects of Mixed Monolayer Cyanobiphenyl Liquid-Crystal-Capped Gold Nanoparticles in Nematic Cyanobiphenyl Liquid Crystal Hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[Crossref] [PubMed]

H. Qi and T. Hegmann, “Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles,” J. Mater. Chem. 16(43), 4197–4205 (2006).
[Crossref]

Hirst, L. S.

A. Rodarte, R. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C. 1(35), 5527–5532 (2013).
[Crossref]

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

Huang, D.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix,” Nano Lett. 5(10), 1978–1981 (2005).
[Crossref] [PubMed]

Ikeda, T.

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

Inman, R. H.

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

Jaeger, H. M.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5(4), 265–270 (2006).
[Crossref] [PubMed]

Jagadish, C.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Kaczmarek, M.

Kelley, D. F.

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

Kinkead, B.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and Alignment Effects of Mixed Monolayer Cyanobiphenyl Liquid-Crystal-Capped Gold Nanoparticles in Nematic Cyanobiphenyl Liquid Crystal Hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[Crossref] [PubMed]

Kivshar, Y. S.

Klein, G.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

Kondo, K.

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–626 (1996).
[Crossref]

Kossyrev, P. A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix,” Nano Lett. 5(10), 1978–1981 (2005).
[Crossref] [PubMed]

Kremers, C.

Kumar, P. S.

S. Kumar, S. K. Pal, P. S. Kumar, and V. Lakshminarayanan, “Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix,” Soft Matter 3(7), 896–900 (2007).
[Crossref]

Kumar, S.

S. Kumar, S. K. Pal, P. S. Kumar, and V. Lakshminarayanan, “Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix,” Soft Matter 3(7), 896–900 (2007).
[Crossref]

Lakshminarayanan, V.

S. Kumar, S. K. Pal, P. S. Kumar, and V. Lakshminarayanan, “Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix,” Soft Matter 3(7), 896–900 (2007).
[Crossref]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Lin, X.-M.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5(4), 265–270 (2006).
[Crossref] [PubMed]

Liu, F.

X. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D Ordered Gold Strings by Coating Nanoparticles with Mesogens,” Adv. Mater. 21(17), 1746–1750 (2009).
[Crossref]

Liu, Q.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Q. Liu, N. Wang, P. Chen, Y. Zhang, and S. He, “Large-area bulk self-assembly of plasmonic nanorods in nematic liquid crystal via surface mediated Alignment,” Opt. Mater. Express 3(11), 1918–1924 (2013).
[Crossref]

Macdonald, J. E.

X. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D Ordered Gold Strings by Coating Nanoparticles with Mesogens,” Adv. Mater. 21(17), 1746–1750 (2009).
[Crossref]

Manna, L.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

Martiradonna, L.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

Marx, V. M.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and Alignment Effects of Mixed Monolayer Cyanobiphenyl Liquid-Crystal-Capped Gold Nanoparticles in Nematic Cyanobiphenyl Liquid Crystal Hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[Crossref] [PubMed]

Mehl, G. H.

X. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D Ordered Gold Strings by Coating Nanoparticles with Mesogens,” Adv. Mater. 21(17), 1746–1750 (2009).
[Crossref]

Minovich, A.

Mirafzal, H.

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

Miroshnichenko, A. E.

Mitov, M.

R. Bitar, G. Agez, and M. Mitov, “Cholesteric liquid crystal self-organization of gold nanoparticles,” Soft Matter 7(18), 8198–8206 (2011).
[Crossref]

Mortensen, N. A.

Neshev, D. N.

Nguyen, T. T.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5(4), 265–270 (2006).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Oh-e, M.

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–626 (1996).
[Crossref]

Ou, J. Y.

Pal, S. K.

S. Kumar, S. K. Pal, P. S. Kumar, and V. Lakshminarayanan, “Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix,” Soft Matter 3(7), 896–900 (2007).
[Crossref]

Pandolfi, R.

A. Rodarte, R. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C. 1(35), 5527–5532 (2013).
[Crossref]

Panissod, P.

A. Demortière, S. Buathong, B. P. Pichon, P. Panissod, D. Guillon, S. Bégin-Colin, and B. Donnio, “Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles,” Small 6(12), 1341–1346 (2010).
[Crossref] [PubMed]

Pichon, B. P.

A. Demortière, S. Buathong, B. P. Pichon, P. Panissod, D. Guillon, S. Bégin-Colin, and B. Donnio, “Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles,” Small 6(12), 1341–1346 (2010).
[Crossref] [PubMed]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

Pompa, P. P.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

Qi, H.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and Alignment Effects of Mixed Monolayer Cyanobiphenyl Liquid-Crystal-Capped Gold Nanoparticles in Nematic Cyanobiphenyl Liquid Crystal Hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[Crossref] [PubMed]

H. Qi and T. Hegmann, “Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles,” J. Mater. Chem. 16(43), 4197–4205 (2006).
[Crossref]

Quidant, R.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Rinaldi, R.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

Rodarte, A.

A. Rodarte, R. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C. 1(35), 5527–5532 (2013).
[Crossref]

Sala, F. D.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

Serak, S.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

Singh, G.

A. Choudhary, G. Singh, and A. M. Biradar, “Advances in gold nanoparticle-liquid crystal composites,” Nanoscale 6(14), 7743–7756 (2014).
[Crossref] [PubMed]

Smalyukh, I. I.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Staude, I.

Tabiryan, N.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

Tone, C. M.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

Torre, A. D.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

Tsutsumi, O.

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

Umeton, C.

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

Ungar, G.

X. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D Ordered Gold Strings by Coating Nanoparticles with Mesogens,” Adv. Mater. 21(17), 1746–1750 (2009).
[Crossref]

Verma, Y. K.

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

Wang, N.

Witten, T. A.

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5(4), 265–270 (2006).
[Crossref] [PubMed]

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

Xiao, S.

Xu, J. M.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix,” Nano Lett. 5(10), 1978–1981 (2005).
[Crossref] [PubMed]

Yin, A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix,” Nano Lett. 5(10), 1978–1981 (2005).
[Crossref] [PubMed]

Yuan, Y.

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

Zeng, X.

X. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D Ordered Gold Strings by Coating Nanoparticles with Mesogens,” Adv. Mater. 21(17), 1746–1750 (2009).
[Crossref]

Zhang, H. R.

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and Alignment Effects of Mixed Monolayer Cyanobiphenyl Liquid-Crystal-Capped Gold Nanoparticles in Nematic Cyanobiphenyl Liquid Crystal Hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[Crossref] [PubMed]

Zhang, Y.

Zheludev, N. I.

ACS Nano (1)

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

X. Zeng, F. Liu, A. G. Fowler, G. Ungar, L. Cseh, G. H. Mehl, and J. E. Macdonald, “3D Ordered Gold Strings by Coating Nanoparticles with Mesogens,” Adv. Mater. 21(17), 1746–1750 (2009).
[Crossref]

Appl. Phys. Lett. (1)

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett. 69(5), 623–626 (1996).
[Crossref]

ChemPhysChem (1)

H. Qi, B. Kinkead, V. M. Marx, H. R. Zhang, and T. Hegmann, “Miscibility and Alignment Effects of Mixed Monolayer Cyanobiphenyl Liquid-Crystal-Capped Gold Nanoparticles in Nematic Cyanobiphenyl Liquid Crystal Hosts,” ChemPhysChem 10(8), 1211–1218 (2009).
[Crossref] [PubMed]

J. Mater. Chem. (1)

H. Qi and T. Hegmann, “Formation of periodic stripe patterns in nematic liquid crystals doped with functionalized gold nanoparticles,” J. Mater. Chem. 16(43), 4197–4205 (2006).
[Crossref]

J. Mater. Chem. C. (2)

A. Rodarte, R. Pandolfi, S. Ghosh, and L. S. Hirst, “Quantum dot/liquid crystal composite materials: Self-assembly driven by liquid crystal phase transition templating,” J. Mater. Chem. C. 1(35), 5527–5532 (2013).
[Crossref]

L. De Sio, G. Klein, S. Serak, N. Tabiryan, A. Cunningham, C. M. Tone, F. Ciuchi, T. Burgi, C. Umeton, and T. Bunning, “All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals,” J. Mater. Chem. C. 1(45), 7483–7487 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Nano Lett. (3)

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8(1), 281–286 (2008).
[Crossref] [PubMed]

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric Field Tuning of Plasmonic Response of Nanodot Array in Liquid Crystal Matrix,” Nano Lett. 5(10), 1978–1981 (2005).
[Crossref] [PubMed]

Q. Liu, Y. Yuan, and I. I. Smalyukh, “Electrically and Optically Tunable Plasmonic Guest-Host Liquid Crystals with Long-Range Ordered Nanoparticles,” Nano Lett. 14(7), 4071–4077 (2014).
[Crossref] [PubMed]

Nanoscale (1)

A. Choudhary, G. Singh, and A. M. Biradar, “Advances in gold nanoparticle-liquid crystal composites,” Nanoscale 6(14), 7743–7756 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater. 5(4), 265–270 (2006).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

Y. K. Verma, R. H. Inman, C. G. L. Ferri, H. Mirafzal, S. N. Ghosh, D. F. Kelley, L. S. Hirst, S. Ghosh, and W. C. Chin, “Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies,” Phys. Rev. B 82(16), 165428 (2010).
[Crossref]

Science (2)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

Small (1)

A. Demortière, S. Buathong, B. P. Pichon, P. Panissod, D. Guillon, S. Bégin-Colin, and B. Donnio, “Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles,” Small 6(12), 1341–1346 (2010).
[Crossref] [PubMed]

Soft Matter (2)

R. Bitar, G. Agez, and M. Mitov, “Cholesteric liquid crystal self-organization of gold nanoparticles,” Soft Matter 7(18), 8198–8206 (2011).
[Crossref]

S. Kumar, S. K. Pal, P. S. Kumar, and V. Lakshminarayanan, “Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix,” Soft Matter 3(7), 896–900 (2007).
[Crossref]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

J. Smith, J. Faucheaux, S. White, A. N. Sobh, J. Feser, P. K. Jain, and N. Sobh, “nanoDDSCAT,” (DOI:, (2015). https://nanohub.org/resources/dda .
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental set up demonstrating (a) ‘Off’ configuration with only white light (WL) beam, and (b) ‘On’ configuration with WL and resonant excitation (RE) beams. CS: Cover slip; AuNPs: gold nanoparticles; LC: Liquid crystal; GS: glass slide (c) series of polarized microscopy images of LC sample at 30°C starting with resonant beam off, then turned on and then off again.

Fig. 2
Fig. 2

(a) Extinction spectra of 30 nm AuNPs suspended in its buffer solvent (blue) and in 5CB (red). (b) Transmission of WL as measured by photo-detector for resonant (blue squares) and non-resonant (black circles) excitation. Dashed lines indicate when the excitation light is turned on and off. Near–field simulations of scattered E-field intensity when incident excitation is (c) resonant (532 nm) and (d) non-resonant (750 nm) with the AuNP extinction peak in (a). The incident light is incident along the y-axis and polarized along the z-axis.

Fig. 3
Fig. 3

(a) Transmission in ‘on’ mode mapped out as functions of resonant excitation intensity and sample temperature. (b) Transmission varying with temperature for two different excitation intensities, derived from line cuts along arrows shown in (a), (c) transmission changing with intensity at two different temperatures. Arrows in (a) show positions of line-cuts. Dashed lines in (c) indicate intensity where linear behaviour is disrupted.

Fig. 4
Fig. 4

Transmission measured as a function of time. The AuNPs are drop casted on (a) only the cover slip and (c) both the cover slip and the glass slide. The rise times at different temperatures for (b) a cover slip and (d) both a cover slip and glass slide samples. Time = 0 s denotes when resonant excitation is switched on.

Fig. 5
Fig. 5

(a) Optical set-up for rotating incident E field polarization. LP: linear polarizer; HWP: Half wave plate; VWP: Variable wave plate; PD: photo-detector. LP1 and LP2 are linear polarizers for the test WL beam. Resonant excitation is incident o the sample along the z-axis and the sample is mounted in the x-y plane. Simulations showing the scattered E field from an array of 30 nm AuNPs when the excitation is incident along the z-axis and resonant with the plasmon absorption at (b) θ = 0° and (c) θ = −45° (d) Transmission intensity with changing E polarization θ.

Metrics