Abstract

We propose a distributed residual strain sensor that uses an Al-packaged optical fiber for the first time. The residual strain which causes Brillouin frequency shifts in the optical fiber was measured using Brillouin optical correlation domain analysis with 2 cm spatial resolution. We quantified the Brillouin frequency shifts in the Al-packaged optical fiber by the tensile stress and compared them for a varying number of Al layers in the optical fiber. The Brillouin frequency shift of an optical fiber with one Al layer had a slope of 0.038 MHz/με with respect to tensile stress, which corresponds to 78% of that for an optical fiber without Al layers. After removal of the stress, 87% of the strain remained as residual strain. When different tensile stresses were randomly applied, the strain caused by the highest stress was the only one detected as residual strain. The residual strain was repeatedly measured for a time span of nine months for the purpose of reliability testing, and there was no change in the strain except for a 4% reduction, which is within the error tolerance of the experiment. A composite material plate equipped with our proposed Al-packaged optical fiber sensor was hammered for impact experiment and the residual strain in the plate was successfully detected. We suggest that the Al-packaged optical fiber can be adapted as a distributed strain sensor for smart structures, including aerospace structures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-point dynamic strain sensing using external modulation-based Brillouin optical correlation domain analysis

Bhargav Somepalli, Deepa Venkitesh, Chao Lu, and Balaji Srinivasan
Opt. Express 27(14) 19486-19502 (2019)

Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials

Jooeun Im, Mihyun Kim, Ki-Sun Choi, Tae-Kyung Hwang, and Il-Bum Kwon
Appl. Opt. 53(17) 3615-3620 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Surre, R. H. Scott, P. Banerji, P. A. M. Basheer, T. Sun, and K. T. Grattan, “Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications,” Sens. Actuat. A 185, 8–16 (2012).
    [Crossref]
  2. S. J. Mihaailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel Switzerland) 12(2), 1898–1918 (2012).
  3. H. Tsuda and J. R. Lee, “Strain and damage monitoring of CFRP in impact loading using a fiber Bragg grating sensor system,” Compos. Sci. Technol. 67(7-8), 1353–1361 (2007).
    [Crossref]
  4. E. Udd, “Fiber optic smart structures,” Proc. IEEE 84(1), 60–67 (1996).
    [Crossref]
  5. J. S. Sirkis and A. Dasgupta, “Analysis of a damage sensor based on elasto-plastic meatal coatings on optical fibers,” J. Lightwave Technol. 11(8), 1385–1393 (1993).
    [Crossref]
  6. C. E. Campanella, L. Mastronardi, F. De Leonardis, P. Malara, G. Gagliardi, and V. M. N. Passaro, “Investigation of Fiber Bragg Grating based Mode-Splitting Resonant Sensors,” Opt. Express 22(21), 25371–25384 (2014).
    [Crossref] [PubMed]
  7. P. Malara, L. Mastronardi, C. E. Campanella, A. Giorgini, S. Avino, V. M. N. Passaro, and G. Gagliardi, “Split-mode fiber Bragg-grating sensor for high-resolution static strain measurements,” Opt. Lett. 39(24), 6899–6902 (2014).
    [Crossref] [PubMed]
  8. W. Huang, W. Zhang, T. Zhen, C. Bian, Y. Du, and F. Li, “π-phase-shifted FBG for improving static-strain measurement resolution based on triangle-wave laser tuning technique,” Proc. SPIE 23, 91570L (2014).
  9. N. Liu, Y. Li, Y. Wang, H. Wang, W. Liang, and P. Lu, “Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers,” Opt. Express 19(15), 13880–13891 (2011).
    [Crossref] [PubMed]
  10. W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
    [Crossref]
  11. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [Crossref] [PubMed]
  12. B.-H. Choi and I.-B. Kwon, “A Brillouin optical correlation analysis system using a simplified frequency-modulated time division method,” Opt. Eng. 53(1), 016105 (2014).
  13. A. Motil, Y. Peled, L. Yaron, and M. Tur, “Fast and distributed high resolution Brillouin based fiber,” in Proceedings of OFC2013, paper OM3G.2 (2013).
  14. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  15. K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11(2), 131–145 (2005).
    [Crossref]
  16. Y. S. Mamdem, E. Burov, L.-A. de Montmorillon, Y. Jaouën, G. Moreau, R. Gabet, and F. Taillade, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” Opt. Express 20(2), 1790–1797 (2012).
    [Crossref] [PubMed]
  17. G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors (Basel) 11(1), 384–408 (2011).
    [Crossref] [PubMed]
  18. J. Im, M. Kim, K. S. Choi, T. K. Hwang, and I.-B. Kwon, “Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials,” Appl. Opt. 53(17), 3615–3620 (2014).
    [Crossref] [PubMed]
  19. M. Rosenberger, S. Hessler, S. Belle, B. Schmauss, and R. Hellmann, “Compressive and tensile strain sensing using a polymer planar Bragg grating,” Opt. Express 22(5), 5483–5490 (2014).
    [Crossref] [PubMed]

2014 (6)

2012 (4)

Y. S. Mamdem, E. Burov, L.-A. de Montmorillon, Y. Jaouën, G. Moreau, R. Gabet, and F. Taillade, “Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers,” Opt. Express 20(2), 1790–1797 (2012).
[Crossref] [PubMed]

W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

F. Surre, R. H. Scott, P. Banerji, P. A. M. Basheer, T. Sun, and K. T. Grattan, “Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications,” Sens. Actuat. A 185, 8–16 (2012).
[Crossref]

S. J. Mihaailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel Switzerland) 12(2), 1898–1918 (2012).

2011 (3)

2007 (1)

H. Tsuda and J. R. Lee, “Strain and damage monitoring of CFRP in impact loading using a fiber Bragg grating sensor system,” Compos. Sci. Technol. 67(7-8), 1353–1361 (2007).
[Crossref]

2005 (1)

K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11(2), 131–145 (2005).
[Crossref]

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

1996 (1)

E. Udd, “Fiber optic smart structures,” Proc. IEEE 84(1), 60–67 (1996).
[Crossref]

1993 (1)

J. S. Sirkis and A. Dasgupta, “Analysis of a damage sensor based on elasto-plastic meatal coatings on optical fibers,” J. Lightwave Technol. 11(8), 1385–1393 (1993).
[Crossref]

Avino, S.

Banerji, P.

F. Surre, R. H. Scott, P. Banerji, P. A. M. Basheer, T. Sun, and K. T. Grattan, “Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications,” Sens. Actuat. A 185, 8–16 (2012).
[Crossref]

Bang, O.

W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

Basheer, P. A. M.

F. Surre, R. H. Scott, P. Banerji, P. A. M. Basheer, T. Sun, and K. T. Grattan, “Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications,” Sens. Actuat. A 185, 8–16 (2012).
[Crossref]

Belle, S.

Bian, C.

W. Huang, W. Zhang, T. Zhen, C. Bian, Y. Du, and F. Li, “π-phase-shifted FBG for improving static-strain measurement resolution based on triangle-wave laser tuning technique,” Proc. SPIE 23, 91570L (2014).

Brown, A. W.

K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11(2), 131–145 (2005).
[Crossref]

Brown, K.

K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11(2), 131–145 (2005).
[Crossref]

Burov, E.

Campanella, C. E.

Choi, B.-H.

B.-H. Choi and I.-B. Kwon, “A Brillouin optical correlation analysis system using a simplified frequency-modulated time division method,” Opt. Eng. 53(1), 016105 (2014).

Choi, K. S.

Colpitts, B. G.

K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11(2), 131–145 (2005).
[Crossref]

Dasgupta, A.

J. S. Sirkis and A. Dasgupta, “Analysis of a damage sensor based on elasto-plastic meatal coatings on optical fibers,” J. Lightwave Technol. 11(8), 1385–1393 (1993).
[Crossref]

De Leonardis, F.

de Montmorillon, L.-A.

Degrieck, J.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors (Basel) 11(1), 384–408 (2011).
[Crossref] [PubMed]

Du, Y.

W. Huang, W. Zhang, T. Zhen, C. Bian, Y. Du, and F. Li, “π-phase-shifted FBG for improving static-strain measurement resolution based on triangle-wave laser tuning technique,” Proc. SPIE 23, 91570L (2014).

Gabet, R.

Gagliardi, G.

Giorgini, A.

Grattan, K. T.

F. Surre, R. H. Scott, P. Banerji, P. A. M. Basheer, T. Sun, and K. T. Grattan, “Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications,” Sens. Actuat. A 185, 8–16 (2012).
[Crossref]

He, Z.

Hellmann, R.

Hessler, S.

Hotate, K.

Huang, W.

W. Huang, W. Zhang, T. Zhen, C. Bian, Y. Du, and F. Li, “π-phase-shifted FBG for improving static-strain measurement resolution based on triangle-wave laser tuning technique,” Proc. SPIE 23, 91570L (2014).

Hwang, T. K.

Im, J.

Jaouën, Y.

Kim, M.

Kishi, M.

Kwon, I.-B.

J. Im, M. Kim, K. S. Choi, T. K. Hwang, and I.-B. Kwon, “Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials,” Appl. Opt. 53(17), 3615–3620 (2014).
[Crossref] [PubMed]

B.-H. Choi and I.-B. Kwon, “A Brillouin optical correlation analysis system using a simplified frequency-modulated time division method,” Opt. Eng. 53(1), 016105 (2014).

Lammens, N.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors (Basel) 11(1), 384–408 (2011).
[Crossref] [PubMed]

Lee, J. R.

H. Tsuda and J. R. Lee, “Strain and damage monitoring of CFRP in impact loading using a fiber Bragg grating sensor system,” Compos. Sci. Technol. 67(7-8), 1353–1361 (2007).
[Crossref]

Li, F.

W. Huang, W. Zhang, T. Zhen, C. Bian, Y. Du, and F. Li, “π-phase-shifted FBG for improving static-strain measurement resolution based on triangle-wave laser tuning technique,” Proc. SPIE 23, 91570L (2014).

Li, Y.

Liang, W.

Liu, N.

Lu, P.

Luyckx, G.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors (Basel) 11(1), 384–408 (2011).
[Crossref] [PubMed]

Malara, P.

Mamdem, Y. S.

Mastronardi, L.

Mihaailov, S. J.

S. J. Mihaailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel Switzerland) 12(2), 1898–1918 (2012).

Moreau, G.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Passaro, V. M. N.

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Rosenberger, M.

Schmauss, B.

Scott, R. H.

F. Surre, R. H. Scott, P. Banerji, P. A. M. Basheer, T. Sun, and K. T. Grattan, “Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications,” Sens. Actuat. A 185, 8–16 (2012).
[Crossref]

Sirkis, J. S.

J. S. Sirkis and A. Dasgupta, “Analysis of a damage sensor based on elasto-plastic meatal coatings on optical fibers,” J. Lightwave Technol. 11(8), 1385–1393 (1993).
[Crossref]

Song, K. Y.

Stefani, A.

W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

Sun, T.

F. Surre, R. H. Scott, P. Banerji, P. A. M. Basheer, T. Sun, and K. T. Grattan, “Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications,” Sens. Actuat. A 185, 8–16 (2012).
[Crossref]

Surre, F.

F. Surre, R. H. Scott, P. Banerji, P. A. M. Basheer, T. Sun, and K. T. Grattan, “Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications,” Sens. Actuat. A 185, 8–16 (2012).
[Crossref]

Taillade, F.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Tsuda, H.

H. Tsuda and J. R. Lee, “Strain and damage monitoring of CFRP in impact loading using a fiber Bragg grating sensor system,” Compos. Sci. Technol. 67(7-8), 1353–1361 (2007).
[Crossref]

Udd, E.

E. Udd, “Fiber optic smart structures,” Proc. IEEE 84(1), 60–67 (1996).
[Crossref]

Voet, E.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors (Basel) 11(1), 384–408 (2011).
[Crossref] [PubMed]

Wang, H.

Wang, Y.

Yuan, W.

W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

Zhang, W.

W. Huang, W. Zhang, T. Zhen, C. Bian, Y. Du, and F. Li, “π-phase-shifted FBG for improving static-strain measurement resolution based on triangle-wave laser tuning technique,” Proc. SPIE 23, 91570L (2014).

Zhen, T.

W. Huang, W. Zhang, T. Zhen, C. Bian, Y. Du, and F. Li, “π-phase-shifted FBG for improving static-strain measurement resolution based on triangle-wave laser tuning technique,” Proc. SPIE 23, 91570L (2014).

Appl. Opt. (1)

Compos. Sci. Technol. (1)

H. Tsuda and J. R. Lee, “Strain and damage monitoring of CFRP in impact loading using a fiber Bragg grating sensor system,” Compos. Sci. Technol. 67(7-8), 1353–1361 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. Yuan, A. Stefani, and O. Bang, “Tunable Polymer Fiber Bragg Grating (FBG) Inscription: Fabrication of Dual-FBG Temperature Compensated Polymer Optical Fiber Strain Sensors,” IEEE Photon. Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. S. Sirkis and A. Dasgupta, “Analysis of a damage sensor based on elasto-plastic meatal coatings on optical fibers,” J. Lightwave Technol. 11(8), 1385–1393 (1993).
[Crossref]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Opt. Eng. (1)

B.-H. Choi and I.-B. Kwon, “A Brillouin optical correlation analysis system using a simplified frequency-modulated time division method,” Opt. Eng. 53(1), 016105 (2014).

Opt. Express (4)

Opt. Fiber Technol. (1)

K. Brown, A. W. Brown, and B. G. Colpitts, “Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor,” Opt. Fiber Technol. 11(2), 131–145 (2005).
[Crossref]

Opt. Lett. (2)

Proc. IEEE (1)

E. Udd, “Fiber optic smart structures,” Proc. IEEE 84(1), 60–67 (1996).
[Crossref]

Proc. SPIE (1)

W. Huang, W. Zhang, T. Zhen, C. Bian, Y. Du, and F. Li, “π-phase-shifted FBG for improving static-strain measurement resolution based on triangle-wave laser tuning technique,” Proc. SPIE 23, 91570L (2014).

Sens. Actuat. A (1)

F. Surre, R. H. Scott, P. Banerji, P. A. M. Basheer, T. Sun, and K. T. Grattan, “Study of reliability of fibre Bragg grating fibre optic strain sensors for field-test applications,” Sens. Actuat. A 185, 8–16 (2012).
[Crossref]

Sensors (Basel Switzerland) (1)

S. J. Mihaailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel Switzerland) 12(2), 1898–1918 (2012).

Sensors (Basel) (1)

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors (Basel) 11(1), 384–408 (2011).
[Crossref] [PubMed]

Other (1)

A. Motil, Y. Peled, L. Yaron, and M. Tur, “Fast and distributed high resolution Brillouin based fiber,” in Proceedings of OFC2013, paper OM3G.2 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic of the experimental setup with a BOCDA measurement system (a), the optical fiber under test (b) and optical spectra of a probe before and after an FBG (c).
Fig. 2
Fig. 2 The Brillouin frequency shift of a bare optical bare fiber as a function of applied tension.
Fig. 3
Fig. 3 The Brillouin frequency shift of optical fibers packaged with two Al layers as a function of applied tension.
Fig. 4
Fig. 4 3D graphs of Brillouin gain in optical fibers with (a) and without Al foil package (b) as a function of the fiber distance and frequency difference with 5000 με of applied tension.
Fig. 5
Fig. 5 The Brillouin frequency shift as a function of applied tension when one (a), two (b) and three (c) Al-foil layers were used for optical fiber packaging.
Fig. 6
Fig. 6 3D graphs of Brillouin gain as a function of the fiber distance and frequency difference between a pump and a probe in optical fibers with three Al layers (a) and one Al layer (b).
Fig. 7
Fig. 7 3D graphs of Brillouin gain (a) and Brillouin frequency shift measurement (b) in a one-Al-layer fiber after five months and a Brillouin frequency shift change in Al-packaged optical fiber for nine months (c).
Fig. 8
Fig. 8 A plate of composite materials equipped with the Al-packaged optical fiber (a), a force diagram for a hammer (b), the Brillouin frequency shift difference after impact on the plate using a hammer (c).

Tables (1)

Tables Icon

Table 1 The Brillouin frequency shift and residual strains for different applied tensions, where the percentage in parentheses is a relative value to that of a bare optical fiber (without the Al foil layer).

Metrics