Abstract

An ultra-simple polarization rotator is demonstrated on SOI platform with self-aligned process to enhance performance repeatability and manufactural yield. The polarization rotation is essentially achieved by the symmetry breaking of a channel waveguide with a single-sided slab. The two-step lithography enabling this structure is fully compatible with the mainstream process flow of Si photonic integration. A polarization conversion efficiency of 93% is obtained at 1560nm in less than 10μm light propagation length. The merit of flat-band operation (> 100nm) by using asymmetric waveguide for polarization rotation is inherited.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide

Hongnan Xu and Yaocheng Shi
Opt. Express 25(15) 18485-18491 (2017)

Ultra-compact and fabrication-tolerant polarization rotator based on a bend asymmetric-slab waveguide

Tongtong Cao, Shaowu Chen, Yonghao Fei, Libin Zhang, and Qing-Yang Xu
Appl. Opt. 52(5) 990-996 (2013)

Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform

Wesley D. Sacher, Ying Huang, Liang Ding, Tymon Barwicz, Jared C. Mikkelsen, Benjamin J. F. Taylor, Guo-Qiang Lo, and Joyce K. S. Poon
Opt. Express 22(9) 11167-11174 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. X. Dai, L. Liu, S. M. Gao, D. X. Xu, and S. L. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
    [Crossref]
  2. T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
    [Crossref]
  3. D. X. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowire,” Opt. Express 19, 10940–10949 (2011).
    [Crossref] [PubMed]
  4. L. Liu, Y. H. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011).
    [Crossref] [PubMed]
  5. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 138–140 (2005).
    [Crossref] [PubMed]
  6. Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B, 25, 747–753 (2008).
    [Crossref]
  7. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. I. Itabashi, “Polarization rotator based on silicon wire waveguide,” Opt. Express 16, 2628–2635 (2008).
    [Crossref] [PubMed]
  8. J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based mode evolution polarization rotator,” J. Sel. Top. Quant. Electron. 16, 53–60 (2010).
    [Crossref]
  9. D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. V. Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–483 (2012).
    [Crossref]
  10. S. H. Kim, R. Takei, and Y. Shoji, “An Single-trench waveguide TE-TM mode converter,” Opt. Express 17, 11267–11273 (2009).
    [Crossref] [PubMed]
  11. M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” Opt. Express 24, 2031–2034 (2012).
  12. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
    [Crossref]

2013 (1)

D. X. Dai, L. Liu, S. M. Gao, D. X. Xu, and S. L. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

2012 (2)

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. V. Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–483 (2012).
[Crossref]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” Opt. Express 24, 2031–2034 (2012).

2011 (2)

2010 (2)

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based mode evolution polarization rotator,” J. Sel. Top. Quant. Electron. 16, 53–60 (2010).
[Crossref]

2009 (1)

2008 (2)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
[Crossref]

2005 (1)

Aamer, M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” Opt. Express 24, 2031–2034 (2012).

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
[Crossref]

Bogaerts, W.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. V. Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–483 (2012).
[Crossref]

Bowers, J. E.

Brimont, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” Opt. Express 24, 2031–2034 (2012).

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Dai, D. X.

D. X. Dai, L. Liu, S. M. Gao, D. X. Xu, and S. L. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

D. X. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowire,” Opt. Express 19, 10940–10949 (2011).
[Crossref] [PubMed]

Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B, 25, 747–753 (2008).
[Crossref]

Ding, Y. H.

Fedeli, J. M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” Opt. Express 24, 2031–2034 (2012).

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Fukuda, H.

Gao, S. M.

D. X. Dai, L. Liu, S. M. Gao, D. X. Xu, and S. L. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

Gutierrez, A. M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” Opt. Express 24, 2031–2034 (2012).

Hakansson, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” Opt. Express 24, 2031–2034 (2012).

Haus, H. A.

He, S. L.

D. X. Dai, L. Liu, S. M. Gao, D. X. Xu, and S. L. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

Hvam, J. M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
[Crossref]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 138–140 (2005).
[Crossref] [PubMed]

Itabashi, S. I.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
[Crossref]

Kim, S. H.

Kwong, D. L.

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based mode evolution polarization rotator,” J. Sel. Top. Quant. Electron. 16, 53–60 (2010).
[Crossref]

Liu, L.

D. X. Dai, L. Liu, S. M. Gao, D. X. Xu, and S. L. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

L. Liu, Y. H. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011).
[Crossref] [PubMed]

Lo, G. Q.

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based mode evolution polarization rotator,” J. Sel. Top. Quant. Electron. 16, 53–60 (2010).
[Crossref]

Martinelli, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Popovi, M. A.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
[Crossref]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
[Crossref]

Roelkens, G.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. V. Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–483 (2012).
[Crossref]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” Opt. Express 24, 2031–2034 (2012).

Sanchis, P.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” Opt. Express 24, 2031–2034 (2012).

Selvaraja, S.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. V. Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–483 (2012).
[Crossref]

Shinojima, H.

Shoji, Y.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
[Crossref]

Takei, R.

Thourhout, D. V.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. V. Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–483 (2012).
[Crossref]

Torregiani, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Tsuchizawa, T.

Verheyen, P.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. V. Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–483 (2012).
[Crossref]

Vermeulen, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. V. Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–483 (2012).
[Crossref]

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section,” Opt. Express 24, 2031–2034 (2012).

Wang, Z. C.

Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B, 25, 747–753 (2008).
[Crossref]

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
[Crossref]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 138–140 (2005).
[Crossref] [PubMed]

Xu, D. X.

D. X. Dai, L. Liu, S. M. Gao, D. X. Xu, and S. L. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

Yamada, K.

Yu, M. B.

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based mode evolution polarization rotator,” J. Sel. Top. Quant. Electron. 16, 53–60 (2010).
[Crossref]

Yvind, K.

Zhang, J.

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based mode evolution polarization rotator,” J. Sel. Top. Quant. Electron. 16, 53–60 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. V. Thourhout, and G. Roelkens, “Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay,” IEEE Photon. Technol. Lett. 24, 482–483 (2012).
[Crossref]

J. Opt. Soc. Am. B, (1)

Z. C. Wang and D. X. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B, 25, 747–753 (2008).
[Crossref]

J. Sel. Top. Quant. Electron. (1)

J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based mode evolution polarization rotator,” J. Sel. Top. Quant. Electron. 16, 53–60 (2010).
[Crossref]

Laser & Photonics Reviews (1)

D. X. Dai, L. Liu, S. M. Gao, D. X. Xu, and S. L. He, “Polarization management for silicon photonic integrated circuits,” Laser & Photonics Reviews 7, 303–328 (2013).
[Crossref]

Nature Photon. (1)

T. Barwicz, M. R. Watts, M. A. Popovi, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photon. 1, 57–60 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104, 033902 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of the most critical intermediate processing step to realize the polarization rotator. The left and right halves over the buried oxide are illustrated for rib and channel waveguides, respectively.
Fig. 2
Fig. 2 The two lowest-order modes in (a–b) the symmetric access waveguides and (c–d) the asymmetric polarization rotation waveguide.
Fig. 3
Fig. 3 The Ex and Ey modes evolution process simulated by finite difference time-domain (FDTD) method.
Fig. 4
Fig. 4 Microscopic images at the polarization rotation section of (a) the top view; the side views (b) with and (c) without Si slab; and (d) the cross-sectional view of the asymmetric waveguide.
Fig. 5
Fig. 5 The dependence of polarization conversion spectrum on the length of asymmetric waveguide LROT at 1560nm.
Fig. 6
Fig. 6 The normalized transmission spectrum of polarization conversion

Tables (2)

Tables Icon

Table 1 The optimized values of structural parameters W and h for different Si overlay thickness. The criterion is to achieve the highest efficiency at a wavelength of 1550nm.

Tables Icon

Table 2 Comparison of the alignment tolerance of two-step lithography with some representative benchmark rotators based on asymmetric waveguides (WG).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R = A ε r | E x | 2 d x d y A ε r | E x | 2 d x d y + A ε r | E y | 2 d x d y ,
L π = λ 2 ( n eff 1 n eff 2 ) .
η = 4 sin 2 ϕ cos 2 ϕ sin 2 π L ROT 2 L π .

Metrics