Abstract

We report a broadband Yb-doped fiber laser system with a gain-narrowing compensator comprised of multiple dielectric layers. Utilizing this filter, we obtained broadband pulses over a bandwidth of 1020–1080 nm directly from the amplifier. After the dispersion compensation, the chirped pulse amplification system delivered 65-fs pulses with energies of 100 nJ and a repetition rate of 3 MHz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
41-fs, 35-nJ, Green Pulse Generation from a Yb-doped Fiber Laser System

Hideyuki Takada, Yuhei Chiba, Dai Yoshitomi, Kenji Torizuka, and Kazuhiko Misawa
Opt. Express 25(3) 2115-2120 (2017)

Non-collinear CPOPA seeded by an Yb3+-doped self-starting passive mode-locked fiber laser

Hongying Wang, Hongjun Liu, Xiaoli Li, and Wei Zhao
Opt. Express 15(8) 4493-4498 (2007)

Practical 24-fs, 1-μJ, 1-MHz Yb-fiber laser amplification system

Huanyu Song, Bowen Liu, Yang Li, Youjian Song, Hao He, Lu Chai, Minglie Hu, and Chingyue Wang
Opt. Express 25(7) 7559-7566 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of ‘transition states’ in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
    [Crossref]
  2. H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
    [Crossref]
  3. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
    [Crossref] [PubMed]
  4. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
    [Crossref] [PubMed]
  5. K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
    [Crossref] [PubMed]
  6. L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
    [Crossref]
  7. T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
    [Crossref]
  8. H. Takada and K. Torizuka, “Design and construction of a TW-Class 12-fs Ti:Sapphire chirped-pulse amplification system,” IEEE J. Sel. Top. Quantum Electron. 12(2), 201–212 (2006).
    [Crossref]
  9. C. L. Hutchinson, T. L. Troy, and E. M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35(13), 2325–2332 (1996).
    [Crossref] [PubMed]
  10. J. R. Birge, H. M. Crespo, and F. X. Kärtner, “Theory and design of two-dimensional spectral shearing interferometry for few-cycle pulse measurement,” J. Opt. Soc. Am. B 27(6), 1165–1173 (2010).
    [Crossref]
  11. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
    [Crossref]

2010 (1)

2008 (1)

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

2007 (2)

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
[Crossref] [PubMed]

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

2006 (1)

H. Takada and K. Torizuka, “Design and construction of a TW-Class 12-fs Ti:Sapphire chirped-pulse amplification system,” IEEE J. Sel. Top. Quantum Electron. 12(2), 201–212 (2006).
[Crossref]

2002 (1)

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

1998 (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

1996 (1)

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

1989 (1)

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

1987 (1)

M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of ‘transition states’ in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
[Crossref]

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Becker, P. C.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Bigot, J.-Y.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Birge, J. R.

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Cogdell, R. J.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Crespo, H. M.

Dantus, M.

M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of ‘transition states’ in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
[Crossref]

Eidam, T.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Fragnito, H. L.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Herek, J. L.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Horikoshi, K.

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
[Crossref] [PubMed]

Hutchinson, C. L.

Kane, S.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

Kärtner, F. X.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Kuznetsova, L.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

Lang, R.

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
[Crossref] [PubMed]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Limpert, J.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Misawa, K.

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
[Crossref] [PubMed]

Motzkus, M.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Röser, F.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Rosker, M. J.

M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of ‘transition states’ in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
[Crossref]

Schmidt, O.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Sevick-Muraca, E. M.

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Shank, C. V.

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

Squier, J.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Takada, H.

H. Takada and K. Torizuka, “Design and construction of a TW-Class 12-fs Ti:Sapphire chirped-pulse amplification system,” IEEE J. Sel. Top. Quantum Electron. 12(2), 201–212 (2006).
[Crossref]

Torizuka, K.

H. Takada and K. Torizuka, “Design and construction of a TW-Class 12-fs Ti:Sapphire chirped-pulse amplification system,” IEEE J. Sel. Top. Quantum Electron. 12(2), 201–212 (2006).
[Crossref]

Troy, T. L.

Tünnermann, A.

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Weiner, A. M.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Wise, F. W.

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

Wohlleben, W.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Zeidler, D.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Zewail, A. H.

M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of ‘transition states’ in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

L. Kuznetsova, F. W. Wise, S. Kane, and J. Squier, “Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor,” Appl. Phys. B 88(4), 515–518 (2007).
[Crossref]

T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Appl. Phys. B 92(1), 9–12 (2008).
[Crossref]

Chem. Phys. Lett. (1)

H. L. Fragnito, J.-Y. Bigot, P. C. Becker, and C. V. Shank, “Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulses,” Chem. Phys. Lett. 160(2), 101–104 (1989).
[Crossref]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Takada and K. Torizuka, “Design and construction of a TW-Class 12-fs Ti:Sapphire chirped-pulse amplification system,” IEEE J. Sel. Top. Quantum Electron. 12(2), 201–212 (2006).
[Crossref]

J. Chem. Phys. (2)

M. Dantus, M. J. Rosker, and A. H. Zewail, “Real-time probing of ‘transition states’ in chemical reactions,” J. Chem. Phys. 87(4), 2395–2397 (1987).
[Crossref]

K. Horikoshi, K. Misawa, and R. Lang, “Rapid motion capture of mode-specific quantum wave packets selectively generated by phase-controlled optical pulses,” J. Chem. Phys. 127(5), 054104 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nature (1)

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417(6888), 533–535 (2002).
[Crossref] [PubMed]

Science (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Filter consisting of multiple dielectric layers, and (b) Transmission characteristic of the multiple dielectric layers.
Fig. 2
Fig. 2 Experimental setup of Yb-doped fiber laser system.
Fig. 3
Fig. 3 Experimental setup of two-dimensional spectral shearing interferometry (2DSI).
Fig. 4
Fig. 4 (a) Spectra of the oscillator (dotted line) and the output from a photonic crystal fiber (solid line), and (b) Spectra before (dotted line) and after (solid line) the gain-narrowing compensators.
Fig. 5
Fig. 5 Measured output spectrum from the entire CPA system (solid line) and retrieved output spectrum phase without dispersion compensation (dashed line) and with dispersion compensation (dot dashed line) by the SLM. The inset shows calculated temporal shape from the output spectrum.
Fig. 6
Fig. 6 Calculated autocorrelation trace (dotted line) from the main amplified spectrum and measured autocorrelation trace of compressed pulses (solid line).

Metrics