Abstract

We demonstrate a novel technique to fabricate sub-micron silicon nitride waveguides using conventional contact lithography with MEMS-grade photomasks. Potassium hydroxide anisotropic etching of silicon facilitates line reduction and roughness smoothing and is key to the technique. The fabricated waveguides is measured to have a propagation loss of 0.8dB/cm and nonlinear coefficient of γ = 0.3/W/m. A low anomalous dispersion of <100ps/nm/km is also predicted. This type of waveguide is highly suitable for nonlinear optics. The channels naturally formed on top of the waveguide also make it promising for plasmonics and quantum efficiency enhancement in sensing applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides

Clemens J. Krückel, Attila Fülöp, Thomas Klintberg, Jörgen Bengtsson, Peter A. Andrekson, and Víctor Torres-Company
Opt. Express 23(20) 25827-25837 (2015)

Low loss etchless silicon photonic waveguides

Jaime Cardenas, Carl B. Poitras, Jacob T. Robinson, Kyle Preston, Long Chen, and Michal Lipson
Opt. Express 17(6) 4752-4757 (2009)

Optical properties of V-groove silicon nitride trench waveguides

Qiancheng Zhao, Yuewang Huang, and Ozdal Boyraz
J. Opt. Soc. Am. A 33(9) 1851-1859 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, Silicon Photonics: The State of the Art (Wiley-Interscience, 2008).
  2. L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2013).
  3. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [Crossref]
  4. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  5. D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
    [Crossref]
  6. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  7. S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
    [Crossref] [PubMed]
  8. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  9. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  10. S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
    [Crossref]
  11. Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), p. JT3A.27.
  12. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3626–3632 (1990).
    [Crossref]
  13. B. Kloeck, S. D. Collins, N. F. de Rooij, and R. L. Smith, “Study of electrochemical etch-stop for high-precision thickness control of silicon membranes,” IEEE Trans. Electron. Dev. 36(4), 663–669 (1989).
    [Crossref]
  14. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26(13), 2621–2624 (1987).
    [Crossref] [PubMed]
  15. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref] [PubMed]
  16. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [Crossref]
  17. K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and T. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuat. Phys. 74(1-3), 9–12 (1999).
    [Crossref]
  18. N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
    [Crossref]
  19. M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
    [Crossref]
  20. A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: A new concept in optical waveguiding,” in 13th Eur. Conf. Integrated Optics (ECIO),Copenhagen, Denmark (2007).
  21. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  22. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  23. C.-Y. Tai, J. S. Wilkinson, N. M. Perney, M. C. Netti, and J. J. Baumberg, “Self-phase modulation induced spectral broadening of ultrashort laser pulses in tantalum pentoxide (Ta) rib waveguide, ” in The 5th Pacific Rim Conference on Lasers and Electro-optics (CLEO) (2003).
  24. J. Levy, “Integrated Nonlinear Optics In Silicon Nitride Waveguides And Resonators,” Ph.D. dissertation, Cornell Univ. (2011).
  25. P. N. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” Optoelectron. IEE Proc. J 134, 163–170 (1987).
    [Crossref]
  26. R. A. Soref, J. Schmidtchen, and K. Petermann, “LARGE SINGLE-MODE RIB WAVE-GUIDES IN GESI-SI AND SI-ON-SIO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
    [Crossref]
  27. Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
    [Crossref]
  28. G. P. Agrawal, Nonlinear Fiber Optics, Fifth Edition (Academic Press, 2013).

2014 (1)

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

2013 (2)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

S. Romero-García, F. Merget, F. Zhong, H. Finkelstein, and J. Witzens, “Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths,” Opt. Express 21(12), 14036–14046 (2013).
[Crossref] [PubMed]

2012 (2)

S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

2011 (1)

2010 (2)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

2008 (2)

2006 (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

2005 (2)

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[Crossref]

2004 (1)

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

1999 (1)

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and T. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuat. Phys. 74(1-3), 9–12 (1999).
[Crossref]

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “LARGE SINGLE-MODE RIB WAVE-GUIDES IN GESI-SI AND SI-ON-SIO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

1990 (1)

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3626–3632 (1990).
[Crossref]

1989 (1)

B. Kloeck, S. D. Collins, N. F. de Rooij, and R. L. Smith, “Study of electrochemical etch-stop for high-precision thickness control of silicon membranes,” IEEE Trans. Electron. Dev. 36(4), 663–669 (1989).
[Crossref]

1987 (1)

Alic, N.

Baets, R.

Barton, J. S.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Baumgärtel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3626–3632 (1990).
[Crossref]

Bauters, J. F.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Beckx, S.

Bellutti, P.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Bienstman, P.

Blumenthal, D. J.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Bogaerts, W.

Borreman, A.

A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: A new concept in optical waveguiding,” in 13th Eur. Conf. Integrated Optics (ECIO),Copenhagen, Denmark (2007).

Bowers, J. E.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Boyraz, O.

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Collins, S. D.

B. Kloeck, S. D. Collins, N. F. de Rooij, and R. L. Smith, “Study of electrochemical etch-stop for high-precision thickness control of silicon membranes,” IEEE Trans. Electron. Dev. 36(4), 663–669 (1989).
[Crossref]

Costa, R.

A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: A new concept in optical waveguiding,” in 13th Eur. Conf. Integrated Optics (ECIO),Copenhagen, Denmark (2007).

Crivellari, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Csepregi, L.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3626–3632 (1990).
[Crossref]

Cusmai, G.

A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: A new concept in optical waveguiding,” in 13th Eur. Conf. Integrated Optics (ECIO),Copenhagen, Denmark (2007).

Dai, D.

Daldosso, N.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

de Rooij, N. F.

B. Kloeck, S. D. Collins, N. F. de Rooij, and R. L. Smith, “Study of electrochemical etch-stop for high-precision thickness control of silicon membranes,” IEEE Trans. Electron. Dev. 36(4), 663–669 (1989).
[Crossref]

Driessen, A.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and T. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuat. Phys. 74(1-3), 9–12 (1999).
[Crossref]

Dumon, P.

Fainman, Y.

Finkelstein, H.

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Geuzebroek, D. H.

A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: A new concept in optical waveguiding,” in 13th Eur. Conf. Integrated Optics (ECIO),Copenhagen, Denmark (2007).

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Heck, M. J. R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

Heideman, R. G.

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
[Crossref] [PubMed]

A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: A new concept in optical waveguiding,” in 13th Eur. Conf. Integrated Optics (ECIO),Copenhagen, Denmark (2007).

Henry, C. H.

Heuberger, A.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3626–3632 (1990).
[Crossref]

Hilderink, L. T. H.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and T. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuat. Phys. 74(1-3), 9–12 (1999).
[Crossref]

Huang, Y.

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Ikeda, K.

John, D.

John, D. D.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Kalyoncu, S. K.

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Katz, L. E.

Kazarinov, R. F.

Kloeck, B.

B. Kloeck, S. D. Collins, N. F. de Rooij, and R. L. Smith, “Study of electrochemical etch-stop for high-precision thickness control of silicon membranes,” IEEE Trans. Electron. Dev. 36(4), 663–669 (1989).
[Crossref]

Kompocholis, C.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Lambeck, P. V.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and T. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuat. Phys. 74(1-3), 9–12 (1999).
[Crossref]

Lee, H. J.

Leinse, A.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Linders, P. W. C.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and T. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuat. Phys. 74(1-3), 9–12 (1999).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Lui, A.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Luyssaert, B.

Mateman, R.

A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: A new concept in optical waveguiding,” in 13th Eur. Conf. Integrated Optics (ECIO),Copenhagen, Denmark (2007).

Melchiorri, M.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Melloni, A.

A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: A new concept in optical waveguiding,” in 13th Eur. Conf. Integrated Optics (ECIO),Copenhagen, Denmark (2007).

Merget, F.

Minissale, S.

S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moreira, R.

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

Morichetti, F.

A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: A new concept in optical waveguiding,” in 13th Eur. Conf. Integrated Optics (ECIO),Copenhagen, Denmark (2007).

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Negro, L. D.

S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Orlowsky, K. J.

Pavesi, L.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “LARGE SINGLE-MODE RIB WAVE-GUIDES IN GESI-SI AND SI-ON-SIO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Popma, T. J. A.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and T. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuat. Phys. 74(1-3), 9–12 (1999).
[Crossref]

Pucker, G.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Riboli, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Romero-García, S.

Saperstein, R. E.

Sbrana, F.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “LARGE SINGLE-MODE RIB WAVE-GUIDES IN GESI-SI AND SI-ON-SIO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Seidel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3626–3632 (1990).
[Crossref]

Smith, R. L.

B. Kloeck, S. D. Collins, N. F. de Rooij, and R. L. Smith, “Study of electrochemical etch-stop for high-precision thickness control of silicon membranes,” IEEE Trans. Electron. Dev. 36(4), 663–669 (1989).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “LARGE SINGLE-MODE RIB WAVE-GUIDES IN GESI-SI AND SI-ON-SIO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Taillaert, D.

Tien, M.-C.

Torun, R.

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Wiaux, V.

Witzens, J.

Wörhoff, K.

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and T. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuat. Phys. 74(1-3), 9–12 (1999).
[Crossref]

Yerci, S.

S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Zhao, Q.

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Zhong, F.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Minissale, S. Yerci, and L. D. Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “LARGE SINGLE-MODE RIB WAVE-GUIDES IN GESI-SI AND SI-ON-SIO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer Platform for Ultra-Low-Loss Waveguide Applications,” IEEE Photon. Technol. Lett. 24(11), 876–878 (2012).
[Crossref]

IEEE Trans. Electron. Dev. (1)

B. Kloeck, S. D. Collins, N. F. de Rooij, and R. L. Smith, “Study of electrochemical etch-stop for high-precision thickness control of silicon membranes,” IEEE Trans. Electron. Dev. 36(4), 663–669 (1989).
[Crossref]

J. Electrochem. Soc. (1)

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions,” J. Electrochem. Soc. 137(11), 3626–3632 (1990).
[Crossref]

J. Lightwave Technol. (1)

Mater. Sci. Semicond. Process. (1)

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[Crossref]

Nat. Photonics (3)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Opt. Commun. (1)

Y. Huang, S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, “Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors,” Opt. Commun. 313, 186–194 (2014).
[Crossref]

Opt. Express (4)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[Crossref]

Sens. Actuat. Phys. (1)

K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and T. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuat. Phys. 74(1-3), 9–12 (1999).
[Crossref]

Other (8)

A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: A new concept in optical waveguiding,” in 13th Eur. Conf. Integrated Optics (ECIO),Copenhagen, Denmark (2007).

C.-Y. Tai, J. S. Wilkinson, N. M. Perney, M. C. Netti, and J. J. Baumberg, “Self-phase modulation induced spectral broadening of ultrashort laser pulses in tantalum pentoxide (Ta) rib waveguide, ” in The 5th Pacific Rim Conference on Lasers and Electro-optics (CLEO) (2003).

J. Levy, “Integrated Nonlinear Optics In Silicon Nitride Waveguides And Resonators,” Ph.D. dissertation, Cornell Univ. (2011).

P. N. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” Optoelectron. IEE Proc. J 134, 163–170 (1987).
[Crossref]

G. T. Reed, Silicon Photonics: The State of the Art (Wiley-Interscience, 2008).

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2013).

Y. Huang, Q. Zhao, L. Kamyab, A. Rostami, F. Capolino, and O. Boyraz, “Sub-micron silicon nitride waveguide fabrication using conventional optical lithography,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), p. JT3A.27.

G. P. Agrawal, Nonlinear Fiber Optics, Fifth Edition (Academic Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Fabrication process flow. A final annealing step is not shown in the figure. Roughness smoothing by KOH wet etching. (b) Optical microscope graph of the photomask with 5 μm linewidth: edge roughness is observable; (c) optical microscope graph of the PR pattern: the edge roughness is transferred to the PR pattern; (d)Optical microscope graph of the pattern after KOH etching: the edges are dramatically smoothened. (e) KOH etching eliminates the surface roughness generated by coarse MEMS grade photomask.
Fig. 2
Fig. 2 (a) SEM of the fabricated waveguide. (b) Total loss of waveguide with different length using cut-back method. (c) SPM broadening at different input peak power levels. A nonlinear refractive index of n2 = 1.39 × 10−19m2/W was derived from the curve.
Fig. 3
Fig. 3 Numerical simulation results for the waveguide: (a)TM mode profile (|Ey|2); (b) TE mode profile(|Ex|2); (c) effective mode index; (d) effective mode area; (e) evanescent power ratio; and (f) GVD dispersion of the Si3N4 waveguide for different wavelengths.

Tables (1)

Tables Icon

Table 1 Comparison between our work and previous publications

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ=Δ λ i +4 2ln2 e λ 0 n 2 L eff c A eff P t p

Metrics