Abstract

Black Si (b-Si) with gold or silver metal coating has been shown to be an extremely effective substrate for surface-enhanced Raman scattering (SERS). Here, we demonstrate that it is also a highly versatile SERS platform, as it supports a wide range of surface functionalizations. In particular, we report the use of a molecularly imprinted polymer (MIP) coating and a hydrophobic coating on b-Si to establish two different sensing modalities. First, using a MIP layer on Au-coated b-Si, we show selective sensing of two closely related varieties of tetracycline. Second, a hydrophobic coating was used to concentrate the analyte adsorbed on gold colloidal nanoparticles, thus increasing the sensitivity of the measurement by an order of magnitude. In this experiment, Au nanoparticles and analyte were mixed just before SERS measurements and were concentrated by drop-drying on the super-hydrophobic b-Si. These approaches are promising for SERS measurements that are sensitive to the aging of bare plasmonic metal-coated substrates.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate

Chee Leong Tan, Soo Kyung Lee, and Yong Tak Lee
Opt. Express 23(5) 6254-6263 (2015)

High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA

Xianwu Xiu, Yu Guo, Chonghui Li, Zhen Li, Dazhen Li, Chuanwei Zang, Shouzhen Jiang, Aihua Liu, Baoyuan Man, and Chao Zhang
Opt. Mater. Express 8(4) 844-857 (2018)

Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)

Ashwin Gopinath, Svetlana V. Boriskina, Bjorn M. Reinhard, and Luca Dal Negro
Opt. Express 17(5) 3741-3753 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Adv. Func. Mat. 18, 2348–2355 (2008).
    [Crossref]
  2. S. K. Srivastava, A. Shalabney, I. Khalaila, C. R. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10, 3579–3587 (2014).
    [Crossref] [PubMed]
  3. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419–7424 (2012).
    [Crossref] [PubMed]
  4. W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
    [Crossref]
  5. J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analyt. Chem. 77, 6147–6154 (2005).
    [Crossref]
  6. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” NanoLett. 6, 2630–2636 (2006).
    [Crossref]
  7. G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
    [Crossref]
  8. R. Buividas, N. Fahim, J. Juodkazytė, and S. Juodkazis, “Novel method to determine the actual surface area of a laser-nanotextured sensor,” Appl. Phys. A 14, 169–175 (2013).
  9. R. Buividas, N. Dzingelevičius, R. Kubiliūtė, P. R. Stoddart, V. Khanh Truong, E. P. Ivanova, and S. Juodkazis, “Statistically quantified measurement of an Alzheimer’s marker by surface-enhanced Raman scattering,” J. Biophot. (published online) (2014).
    [Crossref]
  10. Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2, 382–388 (2014).
    [Crossref]
  11. Y. Nishijima, J. B. Khurgin, L. Rosa, H. Fujiwara, and S. Juodkazis, “Randomization of gold nano-brick arrays: a tool for SERS enhancement,” Opt. Express 21, 13502–13514 (2013).
    [Crossref] [PubMed]
  12. Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, 641–645 (2014).
    [Crossref]
  13. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
    [Crossref]
  14. W. Song, D. Psaltis, and K. B. Crozier, “Superhydrophobic bull’s-eye for surface-enhanced Raman scattering,” Lab on Chip 14, 3907–3911 (2014).
    [Crossref]
  15. A. C. De Luca, P. Reader-Harris, M. Mazilu, S. Mariggiò, D. Corda, and A. Di Falco, “Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures,” ACS Nano 8, 2575–2583 (2014).
    [Crossref] [PubMed]
  16. W. Song, Y. Chen, J. Xu, X.-R. Yang, and D.-B. Tian, “Dopamine sensor based on molecularly imprinted electrosynthesized polymers,” J. Sol. State Electrochem. 14, 1909–1914 (2010).
    [Crossref]
  17. D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
    [Crossref]
  18. N. Karimian, A. P. Turner, and A. Tiwari, “Electrochemical evaluation of troponin T imprinted polymer receptor,” Biosens. Bioelectron. 59, 160–165 (2014).
    [Crossref] [PubMed]
  19. R. Verma and B. D. Gupta, “Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting,” Analyst 138, 7254–7263 (2013).
    [Crossref] [PubMed]
  20. E. L. Holthoff, D. N. Stratis-Cullum, and M. E. Hankus, “A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering,” Sensors 11, 2700–2714 (2011).
    [Crossref] [PubMed]
  21. S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “High performance surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres,” Chem. Commun. 50, 14331–14333 (2014).
    [Crossref]
  22. L. Chang, Y. Ding, and X. Li, “Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications,” Biosensors and Bioelectronics 50, 106–110 (2013).
    [Crossref] [PubMed]
  23. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20, 11466–11477 (2012).
    [Crossref] [PubMed]
  24. Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys. A 2, 409–414 (2014).
    [Crossref]
  25. G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Physik 525, 907–914 (2013).
    [Crossref]
  26. S. Jayawardhana, L. Rosa, R. Buividas, P. R. Stoddart, and S. Juodkazis, “Light enhancement in surface-enhanced Raman scattering at oblique incidence,” Photon. Sensors 2, 283–288 (2012).
    [Crossref]
  27. S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178–181 (2000).
    [Crossref] [PubMed]

2014 (8)

S. K. Srivastava, A. Shalabney, I. Khalaila, C. R. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10, 3579–3587 (2014).
[Crossref] [PubMed]

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2, 382–388 (2014).
[Crossref]

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, 641–645 (2014).
[Crossref]

W. Song, D. Psaltis, and K. B. Crozier, “Superhydrophobic bull’s-eye for surface-enhanced Raman scattering,” Lab on Chip 14, 3907–3911 (2014).
[Crossref]

A. C. De Luca, P. Reader-Harris, M. Mazilu, S. Mariggiò, D. Corda, and A. Di Falco, “Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures,” ACS Nano 8, 2575–2583 (2014).
[Crossref] [PubMed]

N. Karimian, A. P. Turner, and A. Tiwari, “Electrochemical evaluation of troponin T imprinted polymer receptor,” Biosens. Bioelectron. 59, 160–165 (2014).
[Crossref] [PubMed]

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “High performance surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres,” Chem. Commun. 50, 14331–14333 (2014).
[Crossref]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys. A 2, 409–414 (2014).
[Crossref]

2013 (5)

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Physik 525, 907–914 (2013).
[Crossref]

L. Chang, Y. Ding, and X. Li, “Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications,” Biosensors and Bioelectronics 50, 106–110 (2013).
[Crossref] [PubMed]

R. Verma and B. D. Gupta, “Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting,” Analyst 138, 7254–7263 (2013).
[Crossref] [PubMed]

Y. Nishijima, J. B. Khurgin, L. Rosa, H. Fujiwara, and S. Juodkazis, “Randomization of gold nano-brick arrays: a tool for SERS enhancement,” Opt. Express 21, 13502–13514 (2013).
[Crossref] [PubMed]

R. Buividas, N. Fahim, J. Juodkazytė, and S. Juodkazis, “Novel method to determine the actual surface area of a laser-nanotextured sensor,” Appl. Phys. A 14, 169–175 (2013).

2012 (3)

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419–7424 (2012).
[Crossref] [PubMed]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20, 11466–11477 (2012).
[Crossref] [PubMed]

S. Jayawardhana, L. Rosa, R. Buividas, P. R. Stoddart, and S. Juodkazis, “Light enhancement in surface-enhanced Raman scattering at oblique incidence,” Photon. Sensors 2, 283–288 (2012).
[Crossref]

2011 (2)

E. L. Holthoff, D. N. Stratis-Cullum, and M. E. Hankus, “A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering,” Sensors 11, 2700–2714 (2011).
[Crossref] [PubMed]

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

2010 (2)

W. Song, Y. Chen, J. Xu, X.-R. Yang, and D.-B. Tian, “Dopamine sensor based on molecularly imprinted electrosynthesized polymers,” J. Sol. State Electrochem. 14, 1909–1914 (2010).
[Crossref]

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

2008 (1)

B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Adv. Func. Mat. 18, 2348–2355 (2008).
[Crossref]

2006 (2)

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” NanoLett. 6, 2630–2636 (2006).
[Crossref]

G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[Crossref]

2005 (2)

W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
[Crossref]

J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analyt. Chem. 77, 6147–6154 (2005).
[Crossref]

2000 (1)

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178–181 (2000).
[Crossref] [PubMed]

Abdulhalim, I.

S. K. Srivastava, A. Shalabney, I. Khalaila, C. R. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10, 3579–3587 (2014).
[Crossref] [PubMed]

Accardo, A.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

Ai, K.

B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Adv. Func. Mat. 18, 2348–2355 (2008).
[Crossref]

Buividas, R.

R. Buividas, N. Fahim, J. Juodkazytė, and S. Juodkazis, “Novel method to determine the actual surface area of a laser-nanotextured sensor,” Appl. Phys. A 14, 169–175 (2013).

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419–7424 (2012).
[Crossref] [PubMed]

S. Jayawardhana, L. Rosa, R. Buividas, P. R. Stoddart, and S. Juodkazis, “Light enhancement in surface-enhanced Raman scattering at oblique incidence,” Photon. Sensors 2, 283–288 (2012).
[Crossref]

R. Buividas, N. Dzingelevičius, R. Kubiliūtė, P. R. Stoddart, V. Khanh Truong, E. P. Ivanova, and S. Juodkazis, “Statistically quantified measurement of an Alzheimer’s marker by surface-enhanced Raman scattering,” J. Biophot. (published online) (2014).
[Crossref]

Cai, D.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

Cai, W.

G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[Crossref]

Candeloro, P.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

Chang, L.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “High performance surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres,” Chem. Commun. 50, 14331–14333 (2014).
[Crossref]

L. Chang, Y. Ding, and X. Li, “Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications,” Biosensors and Bioelectronics 50, 106–110 (2013).
[Crossref] [PubMed]

Chen, S.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “High performance surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres,” Chem. Commun. 50, 14331–14333 (2014).
[Crossref]

Chen, Y.

W. Song, Y. Chen, J. Xu, X.-R. Yang, and D.-B. Tian, “Dopamine sensor based on molecularly imprinted electrosynthesized polymers,” J. Sol. State Electrochem. 14, 1909–1914 (2010).
[Crossref]

Cheng, X.

B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Adv. Func. Mat. 18, 2348–2355 (2008).
[Crossref]

Chou, A.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419–7424 (2012).
[Crossref] [PubMed]

Chuang, J. H.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

Cojoc, G.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

Coluccio, M.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

Corda, D.

A. C. De Luca, P. Reader-Harris, M. Mazilu, S. Mariggiò, D. Corda, and A. Di Falco, “Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures,” ACS Nano 8, 2575–2583 (2014).
[Crossref] [PubMed]

Crozier, K. B.

W. Song, D. Psaltis, and K. B. Crozier, “Superhydrophobic bull’s-eye for surface-enhanced Raman scattering,” Lab on Chip 14, 3907–3911 (2014).
[Crossref]

Das, G.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

De Angelis, F.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

De Luca, A. C.

A. C. De Luca, P. Reader-Harris, M. Mazilu, S. Mariggiò, D. Corda, and A. Di Falco, “Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures,” ACS Nano 8, 2575–2583 (2014).
[Crossref] [PubMed]

Di Falco, A.

A. C. De Luca, P. Reader-Harris, M. Mazilu, S. Mariggiò, D. Corda, and A. Di Falco, “Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures,” ACS Nano 8, 2575–2583 (2014).
[Crossref] [PubMed]

Ding, Y.

L. Chang, Y. Ding, and X. Li, “Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications,” Biosensors and Bioelectronics 50, 106–110 (2013).
[Crossref] [PubMed]

Dluhy, R.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” NanoLett. 6, 2630–2636 (2006).
[Crossref]

Driskell, J.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” NanoLett. 6, 2630–2636 (2006).
[Crossref]

Driskell, J. D.

J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analyt. Chem. 77, 6147–6154 (2005).
[Crossref]

Duan, G.

G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[Crossref]

Dzingelevicius, N.

R. Buividas, N. Dzingelevičius, R. Kubiliūtė, P. R. Stoddart, V. Khanh Truong, E. P. Ivanova, and S. Juodkazis, “Statistically quantified measurement of an Alzheimer’s marker by surface-enhanced Raman scattering,” J. Biophot. (published online) (2014).
[Crossref]

Fahim, N.

R. Buividas, N. Fahim, J. Juodkazytė, and S. Juodkazis, “Novel method to determine the actual surface area of a laser-nanotextured sensor,” Appl. Phys. A 14, 169–175 (2013).

Fahim, N. F.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Physik 525, 907–914 (2013).
[Crossref]

Fredericks, P. M.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419–7424 (2012).
[Crossref] [PubMed]

Fujiwara, H.

Gentile, F.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

Gervinskas, G.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Physik 525, 907–914 (2013).
[Crossref]

Grüner, C. R.

S. K. Srivastava, A. Shalabney, I. Khalaila, C. R. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10, 3579–3587 (2014).
[Crossref] [PubMed]

Gupta, B. D.

R. Verma and B. D. Gupta, “Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting,” Analyst 138, 7254–7263 (2013).
[Crossref] [PubMed]

Hankus, M. E.

E. L. Holthoff, D. N. Stratis-Cullum, and M. E. Hankus, “A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering,” Sensors 11, 2700–2714 (2011).
[Crossref] [PubMed]

Hartley, J. S.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Physik 525, 907–914 (2013).
[Crossref]

Hashimoto, Y.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2, 382–388 (2014).
[Crossref]

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, 641–645 (2014).
[Crossref]

Holthoff, E. L.

E. L. Holthoff, D. N. Stratis-Cullum, and M. E. Hankus, “A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering,” Sensors 11, 2700–2714 (2011).
[Crossref] [PubMed]

Ivanova, E. P.

R. Buividas, N. Dzingelevičius, R. Kubiliūtė, P. R. Stoddart, V. Khanh Truong, E. P. Ivanova, and S. Juodkazis, “Statistically quantified measurement of an Alzheimer’s marker by surface-enhanced Raman scattering,” J. Biophot. (published online) (2014).
[Crossref]

Izake, E. L.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419–7424 (2012).
[Crossref] [PubMed]

Jaatinen, E.

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419–7424 (2012).
[Crossref] [PubMed]

Jayawardhana, S.

S. Jayawardhana, L. Rosa, R. Buividas, P. R. Stoddart, and S. Juodkazis, “Light enhancement in surface-enhanced Raman scattering at oblique incidence,” Photon. Sensors 2, 283–288 (2012).
[Crossref]

Jones, G.

W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
[Crossref]

Jones, L.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” NanoLett. 6, 2630–2636 (2006).
[Crossref]

Juodkazis, S.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2, 382–388 (2014).
[Crossref]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys. A 2, 409–414 (2014).
[Crossref]

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, 641–645 (2014).
[Crossref]

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Physik 525, 907–914 (2013).
[Crossref]

Y. Nishijima, J. B. Khurgin, L. Rosa, H. Fujiwara, and S. Juodkazis, “Randomization of gold nano-brick arrays: a tool for SERS enhancement,” Opt. Express 21, 13502–13514 (2013).
[Crossref] [PubMed]

R. Buividas, N. Fahim, J. Juodkazytė, and S. Juodkazis, “Novel method to determine the actual surface area of a laser-nanotextured sensor,” Appl. Phys. A 14, 169–175 (2013).

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419–7424 (2012).
[Crossref] [PubMed]

S. Jayawardhana, L. Rosa, R. Buividas, P. R. Stoddart, and S. Juodkazis, “Light enhancement in surface-enhanced Raman scattering at oblique incidence,” Photon. Sensors 2, 283–288 (2012).
[Crossref]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20, 11466–11477 (2012).
[Crossref] [PubMed]

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178–181 (2000).
[Crossref] [PubMed]

R. Buividas, N. Dzingelevičius, R. Kubiliūtė, P. R. Stoddart, V. Khanh Truong, E. P. Ivanova, and S. Juodkazis, “Statistically quantified measurement of an Alzheimer’s marker by surface-enhanced Raman scattering,” J. Biophot. (published online) (2014).
[Crossref]

Juodkazyte, J.

R. Buividas, N. Fahim, J. Juodkazytė, and S. Juodkazis, “Novel method to determine the actual surface area of a laser-nanotextured sensor,” Appl. Phys. A 14, 169–175 (2013).

Kandasamy, S.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Physik 525, 907–914 (2013).
[Crossref]

Karimian, N.

N. Karimian, A. P. Turner, and A. Tiwari, “Electrochemical evaluation of troponin T imprinted polymer receptor,” Biosens. Bioelectron. 59, 160–165 (2014).
[Crossref] [PubMed]

Khalaila, I.

S. K. Srivastava, A. Shalabney, I. Khalaila, C. R. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10, 3579–3587 (2014).
[Crossref] [PubMed]

Khanh Truong, V.

R. Buividas, N. Dzingelevičius, R. Kubiliūtė, P. R. Stoddart, V. Khanh Truong, E. P. Ivanova, and S. Juodkazis, “Statistically quantified measurement of an Alzheimer’s marker by surface-enhanced Raman scattering,” J. Biophot. (published online) (2014).
[Crossref]

Khurgin, J. B.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2, 382–388 (2014).
[Crossref]

Y. Nishijima, J. B. Khurgin, L. Rosa, H. Fujiwara, and S. Juodkazis, “Randomization of gold nano-brick arrays: a tool for SERS enhancement,” Opt. Express 21, 13502–13514 (2013).
[Crossref] [PubMed]

Klempner, M.

W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
[Crossref]

Krieger, N.

W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
[Crossref]

Kubiliute, R.

R. Buividas, N. Dzingelevičius, R. Kubiliūtė, P. R. Stoddart, V. Khanh Truong, E. P. Ivanova, and S. Juodkazis, “Statistically quantified measurement of an Alzheimer’s marker by surface-enhanced Raman scattering,” J. Biophot. (published online) (2014).
[Crossref]

Kwarta, K. M.

J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analyt. Chem. 77, 6147–6154 (2005).
[Crossref]

Lan, Y.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

Lei, Y.

G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[Crossref]

Li, X.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “High performance surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres,” Chem. Commun. 50, 14331–14333 (2014).
[Crossref]

L. Chang, Y. Ding, and X. Li, “Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications,” Biosensors and Bioelectronics 50, 106–110 (2013).
[Crossref] [PubMed]

Li, Y.

G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[Crossref]

Liberale, C.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

Lipert, R. J.

J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analyt. Chem. 77, 6147–6154 (2005).
[Crossref]

Lu, L.

B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Adv. Func. Mat. 18, 2348–2355 (2008).
[Crossref]

Luo, Y.

G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[Crossref]

Mariggiò, S.

A. C. De Luca, P. Reader-Harris, M. Mazilu, S. Mariggiò, D. Corda, and A. Di Falco, “Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures,” ACS Nano 8, 2575–2583 (2014).
[Crossref] [PubMed]

Mazilu, M.

A. C. De Luca, P. Reader-Harris, M. Mazilu, S. Mariggiò, D. Corda, and A. Di Falco, “Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures,” ACS Nano 8, 2575–2583 (2014).
[Crossref] [PubMed]

Mecarini, F.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

Misawa, H.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178–181 (2000).
[Crossref] [PubMed]

Moir, D.

W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
[Crossref]

Moretti, M.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

Mukai, N.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178–181 (2000).
[Crossref] [PubMed]

Neill, J. D.

J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analyt. Chem. 77, 6147–6154 (2005).
[Crossref]

Nishijima, Y.

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2, 382–388 (2014).
[Crossref]

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, 641–645 (2014).
[Crossref]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys. A 2, 409–414 (2014).
[Crossref]

Y. Nishijima, J. B. Khurgin, L. Rosa, H. Fujiwara, and S. Juodkazis, “Randomization of gold nano-brick arrays: a tool for SERS enhancement,” Opt. Express 21, 13502–13514 (2013).
[Crossref] [PubMed]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20, 11466–11477 (2012).
[Crossref] [PubMed]

Porter, M. D.

J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analyt. Chem. 77, 6147–6154 (2005).
[Crossref]

Premasiri, W.

W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
[Crossref]

Psaltis, D.

W. Song, D. Psaltis, and K. B. Crozier, “Superhydrophobic bull’s-eye for surface-enhanced Raman scattering,” Lab on Chip 14, 3907–3911 (2014).
[Crossref]

Qi, J.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “High performance surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres,” Chem. Commun. 50, 14331–14333 (2014).
[Crossref]

Rauschenbach, B.

S. K. Srivastava, A. Shalabney, I. Khalaila, C. R. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10, 3579–3587 (2014).
[Crossref] [PubMed]

Reader-Harris, P.

A. C. De Luca, P. Reader-Harris, M. Mazilu, S. Mariggiò, D. Corda, and A. Di Falco, “Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures,” ACS Nano 8, 2575–2583 (2014).
[Crossref] [PubMed]

Ren, L.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

Ridpath, J. F.

J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analyt. Chem. 77, 6147–6154 (2005).
[Crossref]

Roberts, M. F.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

Rosa, L.

Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys. A 2, 409–414 (2014).
[Crossref]

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2, 382–388 (2014).
[Crossref]

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, 641–645 (2014).
[Crossref]

Y. Nishijima, J. B. Khurgin, L. Rosa, H. Fujiwara, and S. Juodkazis, “Randomization of gold nano-brick arrays: a tool for SERS enhancement,” Opt. Express 21, 13502–13514 (2013).
[Crossref] [PubMed]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express 20, 11466–11477 (2012).
[Crossref] [PubMed]

S. Jayawardhana, L. Rosa, R. Buividas, P. R. Stoddart, and S. Juodkazis, “Light enhancement in surface-enhanced Raman scattering at oblique incidence,” Photon. Sensors 2, 283–288 (2012).
[Crossref]

Seniutinas, G.

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, 641–645 (2014).
[Crossref]

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Physik 525, 907–914 (2013).
[Crossref]

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419–7424 (2012).
[Crossref] [PubMed]

Shalabney, A.

S. K. Srivastava, A. Shalabney, I. Khalaila, C. R. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10, 3579–3587 (2014).
[Crossref] [PubMed]

Shanmukh, S.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” NanoLett. 6, 2630–2636 (2006).
[Crossref]

Song, W.

W. Song, D. Psaltis, and K. B. Crozier, “Superhydrophobic bull’s-eye for surface-enhanced Raman scattering,” Lab on Chip 14, 3907–3911 (2014).
[Crossref]

W. Song, Y. Chen, J. Xu, X.-R. Yang, and D.-B. Tian, “Dopamine sensor based on molecularly imprinted electrosynthesized polymers,” J. Sol. State Electrochem. 14, 1909–1914 (2010).
[Crossref]

Srivastava, S. K.

S. K. Srivastava, A. Shalabney, I. Khalaila, C. R. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10, 3579–3587 (2014).
[Crossref] [PubMed]

Stoddart, P. R.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Physik 525, 907–914 (2013).
[Crossref]

S. Jayawardhana, L. Rosa, R. Buividas, P. R. Stoddart, and S. Juodkazis, “Light enhancement in surface-enhanced Raman scattering at oblique incidence,” Photon. Sensors 2, 283–288 (2012).
[Crossref]

R. Buividas, N. Dzingelevičius, R. Kubiliūtė, P. R. Stoddart, V. Khanh Truong, E. P. Ivanova, and S. Juodkazis, “Statistically quantified measurement of an Alzheimer’s marker by surface-enhanced Raman scattering,” J. Biophot. (published online) (2014).
[Crossref]

Stratis-Cullum, D. N.

E. L. Holthoff, D. N. Stratis-Cullum, and M. E. Hankus, “A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering,” Sensors 11, 2700–2714 (2011).
[Crossref] [PubMed]

Tian, D.-B.

W. Song, Y. Chen, J. Xu, X.-R. Yang, and D.-B. Tian, “Dopamine sensor based on molecularly imprinted electrosynthesized polymers,” J. Sol. State Electrochem. 14, 1909–1914 (2010).
[Crossref]

Tiwari, A.

N. Karimian, A. P. Turner, and A. Tiwari, “Electrochemical evaluation of troponin T imprinted polymer receptor,” Biosens. Bioelectron. 59, 160–165 (2014).
[Crossref] [PubMed]

Tripp, R. A.

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” NanoLett. 6, 2630–2636 (2006).
[Crossref]

Turner, A. P.

N. Karimian, A. P. Turner, and A. Tiwari, “Electrochemical evaluation of troponin T imprinted polymer receptor,” Biosens. Bioelectron. 59, 160–165 (2014).
[Crossref] [PubMed]

Verma, R.

R. Verma and B. D. Gupta, “Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting,” Analyst 138, 7254–7263 (2013).
[Crossref] [PubMed]

Wakaki, R.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178–181 (2000).
[Crossref] [PubMed]

Wang, H.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Adv. Func. Mat. 18, 2348–2355 (2008).
[Crossref]

Xu, C.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

Xu, J.

W. Song, Y. Chen, J. Xu, X.-R. Yang, and D.-B. Tian, “Dopamine sensor based on molecularly imprinted electrosynthesized polymers,” J. Sol. State Electrochem. 14, 1909–1914 (2010).
[Crossref]

Yamaguchi, A.

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178–181 (2000).
[Crossref] [PubMed]

Yang, X.-R.

W. Song, Y. Chen, J. Xu, X.-R. Yang, and D.-B. Tian, “Dopamine sensor based on molecularly imprinted electrosynthesized polymers,” J. Sol. State Electrochem. 14, 1909–1914 (2010).
[Crossref]

Yu, Y.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

Zhang, B.

B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Adv. Func. Mat. 18, 2348–2355 (2008).
[Crossref]

Zhang, G.

B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Adv. Func. Mat. 18, 2348–2355 (2008).
[Crossref]

Zhang, L.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

Zhao, H.

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

Zhao, Y.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “High performance surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres,” Chem. Commun. 50, 14331–14333 (2014).
[Crossref]

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” NanoLett. 6, 2630–2636 (2006).
[Crossref]

Ziegler, L.

W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
[Crossref]

ACS Nano (1)

A. C. De Luca, P. Reader-Harris, M. Mazilu, S. Mariggiò, D. Corda, and A. Di Falco, “Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures,” ACS Nano 8, 2575–2583 (2014).
[Crossref] [PubMed]

Adv. Func. Mat. (1)

B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Adv. Func. Mat. 18, 2348–2355 (2008).
[Crossref]

Adv. Opt. Mat. (1)

Y. Nishijima, Y. Hashimoto, L. Rosa, J. B. Khurgin, and S. Juodkazis, “Scaling rules of SERS intensity,” Adv. Opt. Mat. 2, 382–388 (2014).
[Crossref]

Analyst (1)

R. Verma and B. D. Gupta, “Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting,” Analyst 138, 7254–7263 (2013).
[Crossref] [PubMed]

Analyt. Chem. (1)

J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill, and J. F. Ridpath, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay,” Analyt. Chem. 77, 6147–6154 (2005).
[Crossref]

Ann. Physik (1)

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Physik 525, 907–914 (2013).
[Crossref]

Appl. Phys. A (3)

Y. Nishijima, L. Rosa, and S. Juodkazis, “Long-range interaction of localized surface plasmons in periodic and random patterns of Au nanoparticles,” Appl. Phys. A 2, 409–414 (2014).
[Crossref]

R. Buividas, N. Fahim, J. Juodkazytė, and S. Juodkazis, “Novel method to determine the actual surface area of a laser-nanotextured sensor,” Appl. Phys. A 14, 169–175 (2013).

Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, and S. Juodkazis, “Engineering gold alloys for plasmonics,” Appl. Phys. A 117, 641–645 (2014).
[Crossref]

Appl. Phys. Lett. (1)

G. Duan, W. Cai, Y. Luo, Y. Li, and Y. Lei, “Hierarchical surface rough ordered au particle arrays and their surface enhanced Raman scattering,” Appl. Phys. Lett. 89, 181918 (2006).
[Crossref]

Biosens. Bioelectron. (1)

N. Karimian, A. P. Turner, and A. Tiwari, “Electrochemical evaluation of troponin T imprinted polymer receptor,” Biosens. Bioelectron. 59, 160–165 (2014).
[Crossref] [PubMed]

Biosensors and Bioelectronics (1)

L. Chang, Y. Ding, and X. Li, “Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications,” Biosensors and Bioelectronics 50, 106–110 (2013).
[Crossref] [PubMed]

Chem. Commun. (1)

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “High performance surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres,” Chem. Commun. 50, 14331–14333 (2014).
[Crossref]

J. Phys. Chem. B (1)

W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
[Crossref]

J. Sol. State Electrochem. (1)

W. Song, Y. Chen, J. Xu, X.-R. Yang, and D.-B. Tian, “Dopamine sensor based on molecularly imprinted electrosynthesized polymers,” J. Sol. State Electrochem. 14, 1909–1914 (2010).
[Crossref]

Lab on Chip (1)

W. Song, D. Psaltis, and K. B. Crozier, “Superhydrophobic bull’s-eye for surface-enhanced Raman scattering,” Lab on Chip 14, 3907–3911 (2014).
[Crossref]

NanoLett. (1)

S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate,” NanoLett. 6, 2630–2636 (2006).
[Crossref]

Nanoscale (1)

A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4, 7419–7424 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. Coluccio, G. Cojoc, A. Accardo, C. Liberale, and et al., “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5, 682–687 (2011).
[Crossref]

Nature (1)

S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, and H. Misawa, “Reversible phase transitions in polymer gels induced by radiation forces,” Nature 408, 178–181 (2000).
[Crossref] [PubMed]

Nature Nanotechn. (1)

D. Cai, L. Ren, H. Zhao, C. Xu, L. Zhang, Y. Yu, H. Wang, Y. Lan, M. F. Roberts, J. H. Chuang, and et al., “A molecular-imprint nanosensor for ultrasensitive detection of proteins,” Nature Nanotechn. 5, 597–601 (2010).
[Crossref]

Opt. Express (2)

Photon. Sensors (1)

S. Jayawardhana, L. Rosa, R. Buividas, P. R. Stoddart, and S. Juodkazis, “Light enhancement in surface-enhanced Raman scattering at oblique incidence,” Photon. Sensors 2, 283–288 (2012).
[Crossref]

Sensors (1)

E. L. Holthoff, D. N. Stratis-Cullum, and M. E. Hankus, “A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering,” Sensors 11, 2700–2714 (2011).
[Crossref] [PubMed]

Small (1)

S. K. Srivastava, A. Shalabney, I. Khalaila, C. R. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10, 3579–3587 (2014).
[Crossref] [PubMed]

Other (1)

R. Buividas, N. Dzingelevičius, R. Kubiliūtė, P. R. Stoddart, V. Khanh Truong, E. P. Ivanova, and S. Juodkazis, “Statistically quantified measurement of an Alzheimer’s marker by surface-enhanced Raman scattering,” J. Biophot. (published online) (2014).
[Crossref]

Supplementary Material (2)

» Media 1: MP4 (9736 KB)     
» Media 2: MP4 (9632 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 a) Dependence of water drop contact angle on b-Si spike height after PFTS adsorption onto the b-Si surface. The difference in shape of the needles: cylindrical (Oxford) and pyramidal (Samco); b) Images showing droplets on b-Si surfaces. See Media 1 and Media 2 for a droplet landing on b-Si.
Fig. 2
Fig. 2 Selectivity of a hybrid sensor: a) target analyte molecules are mixed with polymer matrix and drop cast on 200 nm Au coated b-Si substrates; b) target molecules are removed from the matrix leaving steric-voids ready for molecular recognition; c) the sensor is immersed into a mixture of different molecules and only target molecules can enter into close proximity with the gold surface; d) during SERS measurement the light is concentrated on tips and crevices of the substrate; e) tilted-45° angle SEM image of b-Si coated with 200 nm Au.
Fig. 3
Fig. 3 Concentration of analyte on a non-aging hydrophobic SERS substrate: a) gold nanoparticles with analyte are distributed over a large surface area with a “coffee stain” rim formed at the outside edge, leading to non-uniform analyte deposition on the sample; b) analyte is concentrated on the tips via a drop-drying process. The superhydrophobicity of the surface allows for a small contact area between the aqueous droplet and the nanotextured surface.
Fig. 4
Fig. 4 Solution of the SERS substrate aging problem: SERS spectra of thiophenol mixed with gold nanoparticles on as-fabricated and PFTS-treated b-Si substrates. Thiophenol signature peaks at 998 cm−1, 1022 cm−1 and 1073 cm−1 were an order of magnitude more intense on the hydrophobic surface (following the preparation shown in Fig. 3(b).
Fig. 5
Fig. 5 SERS spectra of tetracycline hydrochloride (TC) imprint with matching and mismatching molecules: (a,b) TC molecules in TC imprint, (c,d) oxytetracycline hydrochloride (OTC) molecules in TC imprint. The excitation laser was operating at 785 nm and the signal was collected using a NA = 0.5 microscope objective lens.
Fig. 6
Fig. 6 SERS spectra of match-filled TC imprint using various imprint preparation recipes 1–3. Different MIPs have variation in permeability and cross-linking. Spectra are offset-shifted for clarity.

Tables (2)

Tables Icon

Table 1 Summary of b-Si etching parameters and spike heights.

Tables Icon

Table 2 Water, master solution, and buffer mixing ratios for fabrication of tetracycline MIP imprints.

Metrics