Abstract

A recent publication [Opt. Express, 22(16), 18833–18842 (2014)] discusses the optimal detection aperture in photothermal single particle microscopy. This new theory is in contradiction with rigorous ab-initio electrodynamic calculations. Nonetheless, the experimentally verified conclusion that a maximum signal occurs at a finite numerical detection aperture remains valid and is in accord with existing models.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Miyazaki, H. Tsurui, K. Kawasumi, and T. Kobayashi, “Optimal detection angle in sub-diffraction resolution photothermal microscopy: application for high sensitivity imaging of biological tissues,” Opt. Express 22(16), 18833–18842 (2014).
    [Crossref] [PubMed]
  2. M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105, 0135011 (2014).
    [Crossref]
  3. M. Selmke and F. Cichos, “Energy-Redistribution signatures in transmission microscopy of Rayleigh and Mie particles,” J. Opt. Soc. Am. A 31, (11)2370–2384 (2014).
    [Crossref]
  4. M. Selmke, “Photothermal single particle detection in theory & experiments,” Dissertation, Universität Leipzig, Institute for experimental physics I, (2013).
  5. M. Selmke, M. Braun, and F. Cichos, “Photothermal single particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
    [Crossref] [PubMed]
  6. M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
    [Crossref] [PubMed]
  7. M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle: errata,” Opt. Express 21(21), 25344–25345 (2013).
    [Crossref]
  8. M. Selmke, M. Braun, and F. Cichos, “Gaussian beam photothermal single particle microscopy,” J. Opt. Soc. Am. A 29(10), 2237–2241 (2012).
    [Crossref]
  9. M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110, 103901 (2013).
    [Crossref] [PubMed]
  10. M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem 73, 2112–2116 (2001).
    [Crossref] [PubMed]
  11. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
    [Crossref] [PubMed]
  12. A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, and M. Orrit, “Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level,” Phys. Chem. Chem. Phys. 13, 149–153 (2011).
    [Crossref]
  13. J. Hwang and W. E. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Optics Commun. 280, 487–491 (2007).
    [Crossref]
  14. M. Selmke and F. Cichos, “Photonic Rutherford scattering: a classical and quantum mechanical analogy in ray-and wave-optics,” Am. J. Phys. 81(6), 405–413 (2013).
    [Crossref]
  15. V. G. Baryshevskii, I. D. Feranchuk, and P. B. Kats, “Regularisation of the Coulomb scattering problem,” Phys. Rev. A, 70(5), (2004).
    [Crossref]
  16. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
    [Crossref]
  17. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
    [Crossref]
  18. W. Zakowicz, “Classical properties of quantum scattering,” J. Phys. A: Math. Gen. 36(15), 4445–4464 (2003).
    [Crossref]
  19. W. Zakowicz, “Scattering of narrow stationary beams and short pulses on spheres,” Europhys. Lett. 85(4): 40001 (2009).
    [Crossref]
  20. D. Drosdoff and A. Widom, “Snells law from an elementary particle viewpoint,” Am. J. Phys. 73(10), 973–975 (2005).
    [Crossref]
  21. G. Gouesbet and G. Gréhan, “Generalized LorenzMie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).
    [Crossref]

2014 (3)

2013 (3)

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle: errata,” Opt. Express 21(21), 25344–25345 (2013).
[Crossref]

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110, 103901 (2013).
[Crossref] [PubMed]

M. Selmke and F. Cichos, “Photonic Rutherford scattering: a classical and quantum mechanical analogy in ray-and wave-optics,” Am. J. Phys. 81(6), 405–413 (2013).
[Crossref]

2012 (3)

2011 (1)

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, and M. Orrit, “Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level,” Phys. Chem. Chem. Phys. 13, 149–153 (2011).
[Crossref]

2009 (1)

W. Zakowicz, “Scattering of narrow stationary beams and short pulses on spheres,” Europhys. Lett. 85(4): 40001 (2009).
[Crossref]

2007 (1)

J. Hwang and W. E. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Optics Commun. 280, 487–491 (2007).
[Crossref]

2006 (1)

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

2005 (1)

D. Drosdoff and A. Widom, “Snells law from an elementary particle viewpoint,” Am. J. Phys. 73(10), 973–975 (2005).
[Crossref]

2003 (1)

W. Zakowicz, “Classical properties of quantum scattering,” J. Phys. A: Math. Gen. 36(15), 4445–4464 (2003).
[Crossref]

2002 (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

2001 (1)

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem 73, 2112–2116 (2001).
[Crossref] [PubMed]

1999 (1)

G. Gouesbet and G. Gréhan, “Generalized LorenzMie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).
[Crossref]

Baryshevskii, V. G.

V. G. Baryshevskii, I. D. Feranchuk, and P. B. Kats, “Regularisation of the Coulomb scattering problem,” Phys. Rev. A, 70(5), (2004).
[Crossref]

Berciaud, S.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Blab, G. A.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Braun, M.

Cichos, F.

M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105, 0135011 (2014).
[Crossref]

M. Selmke and F. Cichos, “Energy-Redistribution signatures in transmission microscopy of Rayleigh and Mie particles,” J. Opt. Soc. Am. A 31, (11)2370–2384 (2014).
[Crossref]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle: errata,” Opt. Express 21(21), 25344–25345 (2013).
[Crossref]

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110, 103901 (2013).
[Crossref] [PubMed]

M. Selmke and F. Cichos, “Photonic Rutherford scattering: a classical and quantum mechanical analogy in ray-and wave-optics,” Am. J. Phys. 81(6), 405–413 (2013).
[Crossref]

M. Selmke, M. Braun, and F. Cichos, “Gaussian beam photothermal single particle microscopy,” J. Opt. Soc. Am. A 29(10), 2237–2241 (2012).
[Crossref]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
[Crossref] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Photothermal single particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[Crossref] [PubMed]

Cognet, L.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Drosdoff, D.

D. Drosdoff and A. Widom, “Snells law from an elementary particle viewpoint,” Am. J. Phys. 73(10), 973–975 (2005).
[Crossref]

Feranchuk, I. D.

V. G. Baryshevskii, I. D. Feranchuk, and P. B. Kats, “Regularisation of the Coulomb scattering problem,” Phys. Rev. A, 70(5), (2004).
[Crossref]

Gaiduk, A.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, and M. Orrit, “Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level,” Phys. Chem. Chem. Phys. 13, 149–153 (2011).
[Crossref]

Gouesbet, G.

G. Gouesbet and G. Gréhan, “Generalized LorenzMie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).
[Crossref]

Gréhan, G.

G. Gouesbet and G. Gréhan, “Generalized LorenzMie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).
[Crossref]

Heber, A.

M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105, 0135011 (2014).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
[Crossref]

Hibara, A.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem 73, 2112–2116 (2001).
[Crossref] [PubMed]

Hwang, J.

J. Hwang and W. E. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Optics Commun. 280, 487–491 (2007).
[Crossref]

Kats, P. B.

V. G. Baryshevskii, I. D. Feranchuk, and P. B. Kats, “Regularisation of the Coulomb scattering problem,” Phys. Rev. A, 70(5), (2004).
[Crossref]

Kawasumi, K.

Kitamori, T.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem 73, 2112–2116 (2001).
[Crossref] [PubMed]

Kobayashi, T.

Lasne, D.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Lounis, B.

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Miyazaki, J.

Moerner, W. E.

J. Hwang and W. E. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Optics Commun. 280, 487–491 (2007).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
[Crossref]

Orrit, M.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, and M. Orrit, “Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level,” Phys. Chem. Chem. Phys. 13, 149–153 (2011).
[Crossref]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Ruijgrok, P. V.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, and M. Orrit, “Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level,” Phys. Chem. Chem. Phys. 13, 149–153 (2011).
[Crossref]

Sawada, T.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem 73, 2112–2116 (2001).
[Crossref] [PubMed]

Selmke, M.

M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105, 0135011 (2014).
[Crossref]

M. Selmke and F. Cichos, “Energy-Redistribution signatures in transmission microscopy of Rayleigh and Mie particles,” J. Opt. Soc. Am. A 31, (11)2370–2384 (2014).
[Crossref]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle: errata,” Opt. Express 21(21), 25344–25345 (2013).
[Crossref]

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110, 103901 (2013).
[Crossref] [PubMed]

M. Selmke and F. Cichos, “Photonic Rutherford scattering: a classical and quantum mechanical analogy in ray-and wave-optics,” Am. J. Phys. 81(6), 405–413 (2013).
[Crossref]

M. Selmke, M. Braun, and F. Cichos, “Photothermal single particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[Crossref] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20(7), 8055–8070 (2012).
[Crossref] [PubMed]

M. Selmke, M. Braun, and F. Cichos, “Gaussian beam photothermal single particle microscopy,” J. Opt. Soc. Am. A 29(10), 2237–2241 (2012).
[Crossref]

M. Selmke, “Photothermal single particle detection in theory & experiments,” Dissertation, Universität Leipzig, Institute for experimental physics I, (2013).

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Tokeshi, M.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem 73, 2112–2116 (2001).
[Crossref] [PubMed]

Tsurui, H.

Uchida, M.

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem 73, 2112–2116 (2001).
[Crossref] [PubMed]

Widom, A.

D. Drosdoff and A. Widom, “Snells law from an elementary particle viewpoint,” Am. J. Phys. 73(10), 973–975 (2005).
[Crossref]

Yorulmaz, M.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, and M. Orrit, “Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level,” Phys. Chem. Chem. Phys. 13, 149–153 (2011).
[Crossref]

Zakowicz, W.

W. Zakowicz, “Scattering of narrow stationary beams and short pulses on spheres,” Europhys. Lett. 85(4): 40001 (2009).
[Crossref]

W. Zakowicz, “Classical properties of quantum scattering,” J. Phys. A: Math. Gen. 36(15), 4445–4464 (2003).
[Crossref]

ACS Nano (1)

M. Selmke, M. Braun, and F. Cichos, “Photothermal single particle microscopy: detection of a nanolens,” ACS Nano 6(3), 2741–2749 (2012).
[Crossref] [PubMed]

Am. J. Phys. (2)

M. Selmke and F. Cichos, “Photonic Rutherford scattering: a classical and quantum mechanical analogy in ray-and wave-optics,” Am. J. Phys. 81(6), 405–413 (2013).
[Crossref]

D. Drosdoff and A. Widom, “Snells law from an elementary particle viewpoint,” Am. J. Phys. 73(10), 973–975 (2005).
[Crossref]

Anal. Chem (1)

M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, “Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination,” Anal. Chem 73, 2112–2116 (2001).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Selmke, A. Heber, M. Braun, and F. Cichos, “Photothermal single particle microscopy using a single laser beam,” Appl. Phys. Lett. 105, 0135011 (2014).
[Crossref]

Europhys. Lett. (1)

W. Zakowicz, “Scattering of narrow stationary beams and short pulses on spheres,” Europhys. Lett. 85(4): 40001 (2009).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

G. Gouesbet and G. Gréhan, “Generalized LorenzMie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. A: Math. Gen. (1)

W. Zakowicz, “Classical properties of quantum scattering,” J. Phys. A: Math. Gen. 36(15), 4445–4464 (2003).
[Crossref]

Opt. Express (3)

Optics Commun. (1)

J. Hwang and W. E. Moerner, “Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam,” Optics Commun. 280, 487–491 (2007).
[Crossref]

Phys. Chem. Chem. Phys. (1)

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, and M. Orrit, “Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level,” Phys. Chem. Chem. Phys. 13, 149–153 (2011).
[Crossref]

Phys. Rev. B (1)

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73(4), 045424 (2006).
[Crossref]

Phys. Rev. Lett. (1)

M. Selmke and F. Cichos, “Photothermal single particle Rutherford scattering microscopy,” Phys. Rev. Lett. 110, 103901 (2013).
[Crossref] [PubMed]

Science (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160 (2002).
[Crossref] [PubMed]

Other (3)

M. Selmke, “Photothermal single particle detection in theory & experiments,” Dissertation, Universität Leipzig, Institute for experimental physics I, (2013).

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
[Crossref]

V. G. Baryshevskii, I. D. Feranchuk, and P. B. Kats, “Regularisation of the Coulomb scattering problem,” Phys. Rev. A, 70(5), (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ = arccos ( cos ( ϑ ) cos ( ϕ ) + sin ( ϑ ) sin ( ϕ ) cos ( ϕ φ ) ) ,

Metrics