Abstract

A strategy to align a mode-locked fiber laser with nonlinear polarization rotation is presented. This strategy is based on measurements of the output polarization state. It is shown that, as the angle of a motorized polarization controller inside the cavity is swept, the laser eventually reaches a mode-locked regime and the values of the Stokes parameters undergo an abrupt change. The sensing of this sudden variation is thus used to detect the mode-locking condition and a feedback mechanism drives the alignment of the polarization controller to force mode locking.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber laser mode locked by a Sagnac interferometer with nonlinear polarization rotation

E. A. Kuzin, B. Ibarra Escamilla, D. E. Garcia-Gomez, and J. W. Haus
Opt. Lett. 26(20) 1559-1561 (2001)

Compact Yb-doped mode-locked fiber laser with only one polarized beam splitter

Run-Qin Xu, Yan-Rong Song, Zi-Kai Dong, Ke-xuan Li, and Jin-rong Tian
Appl. Opt. 56(6) 1674-1681 (2017)

Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation

Zhichao Wu, Deming Liu, Songnian Fu, Lei Li, Ming Tang, and Luming Zhao
Opt. Express 24(16) 18764-18771 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, “Ultrafast fiber lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  2. Q. Hao and H. Zeng, “Cascaded Four-Wave Mixing in Nonlinear Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0900205 (2014).
  3. I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
    [Crossref]
  4. O. Shtyrina, M. Fedoruk, S. Turitsyn, R. Herda, and O. Okhotnikov, “Evolution and stability of pulse regimes in SESAM-mode-locked femtosecond fiber lasers,” J. Opt. Soc. Am. B 26(2), 346–352 (2009).
    [Crossref]
  5. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29(14), 1581–1583 (2004).
    [Crossref] [PubMed]
  6. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17(20), 17630–17635 (2009).
    [Crossref] [PubMed]
  7. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991).
    [Crossref] [PubMed]
  8. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
    [Crossref]
  9. T. Hellwig, T. Walbaum, P. Groß, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101(3), 565–570 (2010).
    [Crossref]
  10. D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21(18), 20626–20631 (2013).
    [Crossref] [PubMed]
  11. X. Shen, W. Li, M. Yan, and H. Zeng, “Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers,” Opt. Lett. 37(16), 3426–3428 (2012).
    [Crossref] [PubMed]
  12. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979).
    [Crossref] [PubMed]
  13. M. Olivier and M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17(2), 405–418 (2009).
    [Crossref] [PubMed]
  14. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [Crossref] [PubMed]
  15. A. Gordon and B. Fischer, “Phase transition theory of pulse formation in passively mode-locked lasers with dispersion and Kerr nonlinearity,” Opt. Commun. 223(1-3), 151–156 (2003).
    [Crossref]
  16. G.-Z. Zhao, L.-L. Gui, X.-S. Xiao, and C.-X. Yang, “Magneto-optic crystal polarization controller assisted mode-locked fiber laser,” Chin. Phys. Lett. 28(3), 034203 (2011).
    [Crossref]

2014 (1)

Q. Hao and H. Zeng, “Cascaded Four-Wave Mixing in Nonlinear Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0900205 (2014).

2013 (2)

2012 (1)

2011 (1)

G.-Z. Zhao, L.-L. Gui, X.-S. Xiao, and C.-X. Yang, “Magneto-optic crystal polarization controller assisted mode-locked fiber laser,” Chin. Phys. Lett. 28(3), 034203 (2011).
[Crossref]

2010 (1)

T. Hellwig, T. Walbaum, P. Groß, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101(3), 565–570 (2010).
[Crossref]

2009 (3)

2004 (1)

2003 (1)

A. Gordon and B. Fischer, “Phase transition theory of pulse formation in passively mode-locked lasers with dispersion and Kerr nonlinearity,” Opt. Commun. 223(1-3), 151–156 (2003).
[Crossref]

1994 (2)

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

1991 (1)

1980 (1)

1979 (1)

Bao, Q. L.

Chen, C.-J.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Duling, I. N.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Eickhoff, W.

Fallnich, C.

T. Hellwig, T. Walbaum, P. Groß, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101(3), 565–570 (2010).
[Crossref]

Fedoruk, M.

Fermann, M. E.

Fischer, B.

A. Gordon and B. Fischer, “Phase transition theory of pulse formation in passively mode-locked lasers with dispersion and Kerr nonlinearity,” Opt. Commun. 223(1-3), 151–156 (2003).
[Crossref]

Gordon, A.

A. Gordon and B. Fischer, “Phase transition theory of pulse formation in passively mode-locked lasers with dispersion and Kerr nonlinearity,” Opt. Commun. 223(1-3), 151–156 (2003).
[Crossref]

Groß, P.

T. Hellwig, T. Walbaum, P. Groß, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101(3), 565–570 (2010).
[Crossref]

Gui, L.-L.

G.-Z. Zhao, L.-L. Gui, X.-S. Xiao, and C.-X. Yang, “Magneto-optic crystal polarization controller assisted mode-locked fiber laser,” Chin. Phys. Lett. 28(3), 034203 (2011).
[Crossref]

Haberl, F.

Hao, Q.

Q. Hao and H. Zeng, “Cascaded Four-Wave Mixing in Nonlinear Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0900205 (2014).

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fiber lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

Hellwig, T.

T. Hellwig, T. Walbaum, P. Groß, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101(3), 565–570 (2010).
[Crossref]

Herda, R.

Hofer, M.

Inoue, Y.

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

Ivanenko, A.

Jablonski, M.

Khripunov, S.

Kobtsev, S.

Kukarin, S.

Li, W.

Loh, K. P.

Maruyama, S.

Menyuk, C. R.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Murakami, Y.

Ober, M. H.

Okhotnikov, O.

Olivier, M.

Piché, M.

Radnatarov, D.

Rashleigh, S. C.

Schmidt, A. J.

Set, S. Y.

Shen, X.

Shtyrina, O.

Simon, A.

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

Tang, D. Y.

Turitsyn, S.

Ulrich, R.

Wai, P. K. A.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

Walbaum, T.

T. Hellwig, T. Walbaum, P. Groß, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101(3), 565–570 (2010).
[Crossref]

Xiao, X.-S.

G.-Z. Zhao, L.-L. Gui, X.-S. Xiao, and C.-X. Yang, “Magneto-optic crystal polarization controller assisted mode-locked fiber laser,” Chin. Phys. Lett. 28(3), 034203 (2011).
[Crossref]

Yaguchi, H.

Yamashita, S.

Yan, M.

Yang, C.-X.

G.-Z. Zhao, L.-L. Gui, X.-S. Xiao, and C.-X. Yang, “Magneto-optic crystal polarization controller assisted mode-locked fiber laser,” Chin. Phys. Lett. 28(3), 034203 (2011).
[Crossref]

Zeng, H.

Q. Hao and H. Zeng, “Cascaded Four-Wave Mixing in Nonlinear Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0900205 (2014).

X. Shen, W. Li, M. Yan, and H. Zeng, “Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers,” Opt. Lett. 37(16), 3426–3428 (2012).
[Crossref] [PubMed]

Zhang, H.

Zhao, G.-Z.

G.-Z. Zhao, L.-L. Gui, X.-S. Xiao, and C.-X. Yang, “Magneto-optic crystal polarization controller assisted mode-locked fiber laser,” Chin. Phys. Lett. 28(3), 034203 (2011).
[Crossref]

Zhao, L. M.

Appl. Opt. (1)

Appl. Phys. B (1)

T. Hellwig, T. Walbaum, P. Groß, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101(3), 565–570 (2010).
[Crossref]

Chin. Phys. Lett. (1)

G.-Z. Zhao, L.-L. Gui, X.-S. Xiao, and C.-X. Yang, “Magneto-optic crystal polarization controller assisted mode-locked fiber laser,” Chin. Phys. Lett. 28(3), 034203 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Operation of a nonlinear loop mirror in a laser cavity,” IEEE J. Quantum Electron. 30(1), 194–199 (1994).
[Crossref]

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Q. Hao and H. Zeng, “Cascaded Four-Wave Mixing in Nonlinear Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0900205 (2014).

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

M. E. Fermann and I. Hartl, “Ultrafast fiber lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Opt. Commun. (1)

A. Gordon and B. Fischer, “Phase transition theory of pulse formation in passively mode-locked lasers with dispersion and Kerr nonlinearity,” Opt. Commun. 223(1-3), 151–156 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The laser cavity and experimental setup.

Fig. 2
Fig. 2

Nonlinear transmission for different angles of the λ/3 waveplate in the ideal case.

Fig. 3
Fig. 3

Simulation results for the first Stokes parameter averaged over the output signal profile as a function of the angle of the λ/3 waveplate in the ideal case (in blue) or with a perturbation ε = ρ = 0.5 rad (in red). Stable mode locking is achieved in the regions labeled “ML”. There is no stable ML around θ = 2.4 rad for the perturbed case.

Fig. 4
Fig. 4

Experimental results for the averaged first Stokes parameter obtained once steady state is reached (red: unperturbed case, blue: perturbation before EDF, black: perturbation after EDF). Stable mode locking is achieved in the “ML” regions except for the blue curve near θ = 3.8 rad.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

W( Γ,θ )=[ cos Γ 2 isin Γ 2 cos2θ isin Γ 2 sin2θ isin Γ 2 sin2θ cos Γ 2 +isin Γ 2 cos2θ ]
K( Δϕ )=[ cosΔϕ sinΔϕ sinΔϕ cosΔϕ ],
T( P )= cos 2 Γ 2 cos 2 Δϕ+ sin 2 Γ 2 cos 2 ( 2θ+Δϕ ).
T'( P )T( P )+[ 1 2 εsinΓ( cos2θ+1 )2δθ sin 2 Γ 2 sin4θ ] +{ ε[ γL 6 sin 4 Γ 2 sin 2 4θ+ 1 2 sinΓ( cos2θ+1 ) ] δθ[ 2γL 3 sinΓ sin 2 Γ 2 cos2θsin4θ+ 4γL 3 sinΓ sin 2 Γ 2 cos4θsin2θ ] }P.

Metrics