Abstract

A Mach-Zehnder interferometer based on a twin-core fiber was proposed and experimentally demonstrated for gas pressure measurements. The in-line Mach-Zehnder interferometer was fabricated by splicing a short section of twin-core fiber between two single mode fibers. A micro-channel was created to form an interferometer arm by use of a femtosecond laser to drill through one core of the twin-core fiber. The other core of the fiber was remained as the reference arm. Such a Mach-Zehnder interferometer exhibited a high gas pressure sensitivity of −9.6 nm/MPa and a low temperature cross-sensitivity of 4.4 KPa/°C. Moreover, ultra-compact device size and all-fiber configuration make it very suitable for highly-sensitive gas pressure sensing in harsh environments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-tip gas pressure sensor based on dual capillaries

Ben Xu, Chao Wang, D. N. Wang, Yaming Liu, and Yi Li
Opt. Express 23(18) 23484-23492 (2015)

Ultra-highly sensitive gas pressure sensor based on dual side-hole fiber interferometers with Vernier effect

Hongfeng Lin, Fufei Liu, Huiyong Guo, Ai Zhou, and Yutang Dai
Opt. Express 26(22) 28763-28772 (2018)

Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing

Maoxiang Hou, Feng Zhu, Ying Wang, Yiping Wang, Changrui Liao, Shen Liu, and Peixiang Lu
Opt. Express 24(24) 27890-27898 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
    [Crossref]
  2. G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
    [Crossref]
  3. Y. P. Wang, J. P. Chen, and Y. J. Rao, “Torsion characteristics of long-period gratings induced by high-frequency CO2 laser pulses,” J. Opt. Soc. Am. B 22(6), 1167–1172 (2005).
    [Crossref]
  4. Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
    [Crossref]
  5. C. R. Liao, D. N. Wang, M. Wang, and M. H. Yang, “Fiber in-line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
    [Crossref]
  6. C. R. Liao, Y. Li, D. N. Wang, T. Sun, and K. T. V. Grattan, “Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by Femtosecond laser,” IEEE Sens. J. 10(11), 1675–1681 (2010).
    [Crossref]
  7. Z. Qi, L. Nan, T. Fink, L. Hong, P. Wei, and H. Ming, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
    [Crossref]
  8. G. Hu and D. Chen, “Side-hole dual-core photonic crystal fiber for hydrostatic pressure sensing,” J. Lightwave Technol. 30(14), 2382–2387 (2012).
    [Crossref]
  9. T. Martynkien, P. Mergo, and W. Urbanczyk, “Sensitivity of birefringent microstructured polymer optical fiber to hydrostatic pressure,” J. Lightwave Technol. 25(16), 1562–1565 (2013).
  10. J. Long, G. Bai-Ou, and W. Huifeng, “Sensitivity characteristics of Fabry-Perot pressure sensors based on hollow-core microstructured fibers,” J. Lightwave Technol. 31(15), 2526–2532 (2013).
    [Crossref]
  11. M. Jun, J. Jian, J. Long, and J. Wei, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
    [Crossref]
  12. C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref] [PubMed]
  13. J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor with graphene diaphragm,” Opt. Lett. 37(13), 2493–2495 (2012).
    [Crossref] [PubMed]
  14. F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37(2), 133–135 (2012).
    [Crossref] [PubMed]
  15. J. C. Xu, X. W. Wang, K. L. Cooper, and A. B. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
    [Crossref] [PubMed]
  16. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [Crossref]
  17. D. Duan, Y. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
    [Crossref]
  18. M. Deng, C. P. Tang, T. Zhu, Y. J. Rao, L. C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer,” Appl. Opt. 49(9), 1593–1598 (2010).
    [Crossref] [PubMed]

2014 (3)

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

2013 (2)

J. Long, G. Bai-Ou, and W. Huifeng, “Sensitivity characteristics of Fabry-Perot pressure sensors based on hollow-core microstructured fibers,” J. Lightwave Technol. 31(15), 2526–2532 (2013).
[Crossref]

T. Martynkien, P. Mergo, and W. Urbanczyk, “Sensitivity of birefringent microstructured polymer optical fiber to hydrostatic pressure,” J. Lightwave Technol. 25(16), 1562–1565 (2013).

2012 (6)

2011 (1)

M. Jun, J. Jian, J. Long, and J. Wei, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

2010 (4)

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

C. R. Liao, Y. Li, D. N. Wang, T. Sun, and K. T. V. Grattan, “Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by Femtosecond laser,” IEEE Sens. J. 10(11), 1675–1681 (2010).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

M. Deng, C. P. Tang, T. Zhu, Y. J. Rao, L. C. Xu, and M. Han, “Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer,” Appl. Opt. 49(9), 1593–1598 (2010).
[Crossref] [PubMed]

2005 (2)

Bai-Ou, G.

Chen, D.

Chen, J. P.

Cooper, K. L.

Dai, J. Y.

Deng, M.

Duan, D.

Fink, T.

Z. Qi, L. Nan, T. Fink, L. Hong, P. Wei, and H. Ming, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Grattan, K. T. V.

C. R. Liao, Y. Li, D. N. Wang, T. Sun, and K. T. V. Grattan, “Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by Femtosecond laser,” IEEE Sens. J. 10(11), 1675–1681 (2010).
[Crossref]

Han, M.

Ho, H. L.

Hong, L.

Z. Qi, L. Nan, T. Fink, L. Hong, P. Wei, and H. Ming, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Hu, G.

Huifeng, W.

Jian, J.

M. Jun, J. Jian, J. Long, and J. Wei, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Jin, W.

Jun, M.

M. Jun, J. Jian, J. Long, and J. Wei, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Li, C.

Li, Y.

C. R. Liao, Y. Li, D. N. Wang, T. Sun, and K. T. V. Grattan, “Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by Femtosecond laser,” IEEE Sens. J. 10(11), 1675–1681 (2010).
[Crossref]

Li, Z.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Liao, C.

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

Liao, C. R.

C. R. Liao, D. N. Wang, M. Wang, and M. H. Yang, “Fiber in-line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
[Crossref]

C. R. Liao, Y. Li, D. N. Wang, T. Sun, and K. T. V. Grattan, “Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by Femtosecond laser,” IEEE Sens. J. 10(11), 1675–1681 (2010).
[Crossref]

Liu, S.

Liu, Y.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

Long, J.

J. Long, G. Bai-Ou, and W. Huifeng, “Sensitivity characteristics of Fabry-Perot pressure sensors based on hollow-core microstructured fibers,” J. Lightwave Technol. 31(15), 2526–2532 (2013).
[Crossref]

M. Jun, J. Jian, J. Long, and J. Wei, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Lou, S. Q.

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

Lu, L.

Lu, P.

Lu, W.

Lu, W. L.

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

Ma, J.

Martynkien, T.

T. Martynkien, P. Mergo, and W. Urbanczyk, “Sensitivity of birefringent microstructured polymer optical fiber to hydrostatic pressure,” J. Lightwave Technol. 25(16), 1562–1565 (2013).

Mergo, P.

T. Martynkien, P. Mergo, and W. Urbanczyk, “Sensitivity of birefringent microstructured polymer optical fiber to hydrostatic pressure,” J. Lightwave Technol. 25(16), 1562–1565 (2013).

Ming, H.

Z. Qi, L. Nan, T. Fink, L. Hong, P. Wei, and H. Ming, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Nan, L.

Z. Qi, L. Nan, T. Fink, L. Hong, P. Wei, and H. Ming, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Qi, Z.

Z. Qi, L. Nan, T. Fink, L. Hong, P. Wei, and H. Ming, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Rao, Y.

Rao, Y. J.

Ren, D.

Shi, X.

Sun, T.

C. R. Liao, Y. Li, D. N. Wang, T. Sun, and K. T. V. Grattan, “Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by Femtosecond laser,” IEEE Sens. J. 10(11), 1675–1681 (2010).
[Crossref]

Tang, C. P.

Urbanczyk, W.

T. Martynkien, P. Mergo, and W. Urbanczyk, “Sensitivity of birefringent microstructured polymer optical fiber to hydrostatic pressure,” J. Lightwave Technol. 25(16), 1562–1565 (2013).

Wang, A. B.

Wang, C.

Wang, D. N.

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

C. R. Liao, D. N. Wang, M. Wang, and M. H. Yang, “Fiber in-line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
[Crossref]

C. R. Liao, Y. Li, D. N. Wang, T. Sun, and K. T. V. Grattan, “Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by Femtosecond laser,” IEEE Sens. J. 10(11), 1675–1681 (2010).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

Wang, M.

C. R. Liao, D. N. Wang, M. Wang, and M. H. Yang, “Fiber in-line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
[Crossref]

Wang, Q.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Wang, X.

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

Wang, X. W.

Wang, Y.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

Wang, Y. P.

Wei, J.

M. Jun, J. Jian, J. Long, and J. Wei, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Wei, P.

Z. Qi, L. Nan, T. Fink, L. Hong, P. Wei, and H. Ming, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

Xu, F.

Xu, J. C.

Xu, L.

Xu, L. C.

Yang, K.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

Yang, M.

Yang, M. H.

C. R. Liao, D. N. Wang, M. Wang, and M. H. Yang, “Fiber in-line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
[Crossref]

Yin, G.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

Yin, G. L.

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

Yu, B.

Zhong, X.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

Zhou, J.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

Zhu, T.

Appl. Opt. (1)

Appl. Phys. B (1)

G. L. Yin, S. Q. Lou, W. L. Lu, and X. Wang, “A high-sensitive fiber curvature sensor using twin core fiber-based filter,” Appl. Phys. B 115(1), 99–104 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (3)

Z. Qi, L. Nan, T. Fink, L. Hong, P. Wei, and H. Ming, “Fiber-optic pressure sensor based on π-phase-shifted fiber Bragg grating on side-hole fiber,” IEEE Photon. Technol. Lett. 24(17), 1519–1522 (2012).
[Crossref]

M. Jun, J. Jian, J. Long, and J. Wei, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

C. R. Liao, D. N. Wang, M. Wang, and M. H. Yang, “Fiber in-line Michelson Interferometer Tip Sensor Fabricated by Femtosecond Laser,” IEEE Photon. Technol. Lett. 24(22), 2060–2063 (2012).
[Crossref]

IEEE Sens. J. (1)

C. R. Liao, Y. Li, D. N. Wang, T. Sun, and K. T. V. Grattan, “Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by Femtosecond laser,” IEEE Sens. J. 10(11), 1675–1681 (2010).
[Crossref]

J. Appl. Phys. (1)

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (3)

Opt. Lett. (4)

Sens. Actuators B Chem. (1)

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199(0), 31–35 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the TCF based MZI.
Fig. 2
Fig. 2 Schematic diagram of the splicing process assisted with a red beam irradiation, (a) before fusion splicing; (b) adjusting X and Y motors to make the light intensity of the two cores become equal with each other; (c) microscope image of the cross section of TCF; and (d) microscope image of the spliced joint.
Fig. 3
Fig. 3 (a) Top-view and (b) side-view microscope images of the created micro-channel; (c) transmission spectra of the TCF with and without a micro-channel in air.
Fig. 4
Fig. 4 Experimental setup for gas pressure measurements.
Fig. 5
Fig. 5 (a) Transmission spectral evolution within the wavelength range from 1580 to 1650nm when the gas pressure increases from 0 to 2 MPa; (b) dip wavelength versus gas pressure; (c) Simulation model of the micro-channel deformation; (d) dip wavelength versus temperature.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I= I out1 + I out2 +2 I out1 I out2 cos( 2πLΔn λ + φ 0 ),
2πLΔn λ m + φ 0 =(2m+1)π,
ε= ΔL L = (12δ) E P,
dλ dP = λ Δn d(Δn) dP ,
n=1+ 2.8793× 10 9 ×P 1+0.003671×t ,

Metrics