Abstract

We propose and experimentally demonstrate a refractive index (RI) sensor based on cascaded microfiber knot resonators (CMKRs) with Vernier effect. Deriving from high proportional evanescent field of microfiber and spectrum magnification function of Vernier effect, the RI sensor shows high sensitivity as well as high detection resolution. By using the method named “Drawing-Knotting-Assembling (DKA)”, a compact CMKRs is fabricated for experimental demonstration. With the assistance of Lorentz fitting algorithm on the transmission spectrum, sensitivity of 6523nm/RIU and detection resolution up to 1.533 × 10−7RIU are obtained in the experiment which show good agreement with the numerical simulation. The proposed all-fiber RI sensor with high sensitivity, compact size and low cost can be widely used for chemical and biological detection, as well as the electronic/magnetic field measurement.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators

Yu Wu, Yun-Jiang Rao, Yi-huai Chen, and Yuan Gong
Opt. Express 17(20) 18142-18147 (2009)

Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field

Peng Zhang, Ming Tang, Feng Gao, Benpeng Zhu, Songnian Fu, Jun Ouyang, Perry Ping Shum, and Deming Liu
Opt. Express 22(16) 19581-19588 (2014)

Fiber refractive index sensor based on dual polarized Mach–Zehnder interference caused by a single-mode fiber loop

Lei Chen, Wei-Gang Zhang, Li Wang, Quan Zhou, Jonathan Sieg, De-Long Zhao, Biao Wang, Tie-Yi Yan, and Song Wang
Appl. Opt. 55(1) 63-69 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. H. Tai and P. K. Wei, “Sensitive liquid refractive index sensors using tapered optical fiber tips,” Opt. Lett. 35(7), 944–946 (2010).
    [Crossref] [PubMed]
  2. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  3. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref] [PubMed]
  4. S. Gao, W. Zhang, Z. Y. Bai, H. Zhang, W. Lin, L. Wang, and J. Li, “Microfiber-Enabled In-line Fabry–Pérot Interferometer for High-Sensitive Force and Refractive Index Sensing,” J. Lightwave Technol. 32(9), 1682–1688 (2014).
    [Crossref]
  5. Y. Wang, M. Yang, D. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [Crossref]
  6. R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
    [Crossref] [PubMed]
  7. G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating,” J. Opt. Soc. Am. B 24(10), 2696–2701 (2007).
    [Crossref]
  8. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [Crossref] [PubMed]
  9. D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
    [Crossref] [PubMed]
  10. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  11. G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical fiber nanowires and microwires: fabrication and applications,” Adv. Opt. Photon. 1(1), 107–161 (2009).
    [Crossref]
  12. F. Gao, H. Liu, C. Sheng, C. Zhu, and S. N. Zhu, “Refractive index sensor based on the leaky radiation of a microfiber,” Opt. Express 22(10), 12645–12652 (2014).
    [Crossref] [PubMed]
  13. R. Liang, Q. Sun, J. Wo, and D. Liu, “Investigation on micro/nanofiber Bragg grating for refractive index sensing,” Opt. Commun. 285(6), 1128–1133 (2012).
    [Crossref]
  14. Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
    [Crossref] [PubMed]
  15. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
    [Crossref] [PubMed]
  16. J. Zhang, Q. Sun, R. Liang, W. Jia, X. Li, J. Wo, D. Liu, and P. Shum, “Microfiber Fabry–Perot Interferometer for Dual-Parameter Sensing,” J. Lightwave Technol. 31(10), 1608–1615 (2013).
    [Crossref]
  17. W. Jin, H. Xuan, and W. Jin, “Long period gratings in highly birefringent microfibers,” Proc. SPIE 9157, 91577N (2014).
    [Crossref]
  18. W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
    [Crossref] [PubMed]
  19. Y. Tan, L. Sun, L. Jin, J. Li, and B. Guan, “Long period grating-based microfiber Mach-Zehnder interferometer for sensing applications,” Proc. SPIE 8924, 892435 (2013).
    [Crossref]
  20. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 37(1), 67–69 (2012).
    [Crossref] [PubMed]
  21. M. Kuczkowski, C. Ying, X. Quyen Dinh, P. P. Shum, K. A. Rutkowska, and T. R. Woliński, “Microfiber Sagnac Interferometer for sensing applications,” Photon. Lett. Poland 4(4), 134–136 (2012).
    [Crossref]
  22. L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express 20(9), 10180–10185 (2012).
    [Crossref] [PubMed]
  23. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [Crossref] [PubMed]
  24. X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
    [Crossref]
  25. X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
    [Crossref] [PubMed]
  26. Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17(20), 18142–18147 (2009).
    [Crossref] [PubMed]
  27. X. Li and H. Ding, “All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid,” Opt. Lett. 37(24), 5187–5189 (2012).
    [Crossref] [PubMed]
  28. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref] [PubMed]
  29. R. Xu, S. L. P. Lu, and D. Liu, “Experimental Characterization of a Vernier Strain Sensor Using Cascaded Fiber Rings,” IEEE Photon. Technol. Lett. 24(23), 2125–2128 (2012).
    [Crossref]
  30. L. Zhang, P. Lu, L. Chen, C. Huang, D. Liu, and S. Jiang, “Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy,” Opt. Lett. 37(13), 2622–2624 (2012).
    [Crossref] [PubMed]
  31. P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
    [Crossref] [PubMed]
  32. S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried hetero structure ring resonator filters using vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
    [Crossref]
  33. J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett. 23(13), 842–844 (2011).
    [Crossref]
  34. V. Zamora, P. Lützow, M. Weiland, and D. Pergande, “Investigation of cascaded SiN microring resonators at 1.3 µm and 1.5 µm,” Opt. Express 21(23), 27550–27557 (2013).
    [PubMed]
  35. P. Urquhart, “Compound optical-fiber-based resonators,” J. Opt. Soc. Am. A 5(6), 803–812 (1988).
    [Crossref]
  36. G. Vienne, Y. Li, X. Jiang, and L. Tong, “Effect of host polymer on microring resonators,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
    [Crossref]

2014 (4)

2013 (4)

J. Zhang, Q. Sun, R. Liang, W. Jia, X. Li, J. Wo, D. Liu, and P. Shum, “Microfiber Fabry–Perot Interferometer for Dual-Parameter Sensing,” J. Lightwave Technol. 31(10), 1608–1615 (2013).
[Crossref]

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Y. Tan, L. Sun, L. Jin, J. Li, and B. Guan, “Long period grating-based microfiber Mach-Zehnder interferometer for sensing applications,” Proc. SPIE 8924, 892435 (2013).
[Crossref]

V. Zamora, P. Lützow, M. Weiland, and D. Pergande, “Investigation of cascaded SiN microring resonators at 1.3 µm and 1.5 µm,” Opt. Express 21(23), 27550–27557 (2013).
[PubMed]

2012 (7)

2011 (3)

2010 (4)

2009 (3)

2008 (1)

2007 (5)

2006 (1)

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

2005 (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried hetero structure ring resonator filters using vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

1988 (1)

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Bai, Z. Y.

Bienstman, P.

Bogaerts, W.

Brambilla, G.

Chen, C.

Chen, L.

Chen, Q. D.

Chen, Y.

Chen, Y. H.

Choi, S. J.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried hetero structure ring resonator filters using vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried hetero structure ring resonator filters using vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

Claes, T.

Cui, Y.

Dai, D.

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett. 23(13), 842–844 (2011).
[Crossref]

D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
[Crossref] [PubMed]

Dapkus, P. D.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried hetero structure ring resonator filters using vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

Ding, H.

Fang, X.

Feng, X.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Fu, S.

Gao, F.

Gao, S.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Gong, Y.

Guan, B.

Y. Tan, L. Sun, L. Jin, J. Li, and B. Guan, “Long period grating-based microfiber Mach-Zehnder interferometer for sensing applications,” Proc. SPIE 8924, 892435 (2013).
[Crossref]

Guan, B. O.

Han, Y.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Horak, P.

Hu, J.

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett. 23(13), 842–844 (2011).
[Crossref]

Hu, L.

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Huang, C.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Ji, W. B.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Jia, W.

Jiang, S.

Jiang, X.

G. Vienne, Y. Li, X. Jiang, and L. Tong, “Effect of host polymer on microring resonators,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[Crossref]

X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[Crossref] [PubMed]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Jin, L.

Y. Tan, L. Sun, L. Jin, J. Li, and B. Guan, “Long period grating-based microfiber Mach-Zehnder interferometer for sensing applications,” Proc. SPIE 8924, 892435 (2013).
[Crossref]

Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

Jin, W.

W. Jin, H. Xuan, and W. Jin, “Long period gratings in highly birefringent microfibers,” Proc. SPIE 9157, 91577N (2014).
[Crossref]

W. Jin, H. Xuan, and W. Jin, “Long period gratings in highly birefringent microfibers,” Proc. SPIE 9157, 91577N (2014).
[Crossref]

Jung, Y.

Kashyap, R.

Koizumi, F.

Koukharenko, E.

Kuczkowski, M.

M. Kuczkowski, C. Ying, X. Quyen Dinh, P. P. Shum, K. A. Rutkowska, and T. R. Woliński, “Microfiber Sagnac Interferometer for sensing applications,” Photon. Lett. Poland 4(4), 134–136 (2012).
[Crossref]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Li, J.

Li, X.

Li, Y.

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[Crossref] [PubMed]

G. Vienne, Y. Li, X. Jiang, and L. Tong, “Effect of host polymer on microring resonators,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[Crossref]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Liang, R.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Liao, C. R.

Lin, B.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Lin, W.

Liu, D.

Liu, H.

Liu, S.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Lu, P.

Lu, S. L. P.

R. Xu, S. L. P. Lu, and D. Liu, “Experimental Characterization of a Vernier Strain Sensor Using Cascaded Fiber Rings,” IEEE Photon. Technol. Lett. 24(23), 2125–2128 (2012).
[Crossref]

Lützow, P.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Murugan, G. S.

Nemova, G.

Ng, C. L.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Ouyang, J.

Peng, Z.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried hetero structure ring resonator filters using vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

Pergande, D.

Quyen Dinh, X.

M. Kuczkowski, C. Ying, X. Quyen Dinh, P. P. Shum, K. A. Rutkowska, and T. R. Woliński, “Microfiber Sagnac Interferometer for sensing applications,” Photon. Lett. Poland 4(4), 134–136 (2012).
[Crossref]

Ran, Y.

Rao, Y. J.

Richardson, D. J.

Rutkowska, K. A.

M. Kuczkowski, C. Ying, X. Quyen Dinh, P. P. Shum, K. A. Rutkowska, and T. R. Woliński, “Microfiber Sagnac Interferometer for sensing applications,” Photon. Lett. Poland 4(4), 134–136 (2012).
[Crossref]

Sessions, N. P.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Shen, X.

Sheng, C.

Shum, P.

Shum, P. P.

Sun, H. B.

Sun, L.

Y. Tan, L. Sun, L. Jin, J. Li, and B. Guan, “Long period grating-based microfiber Mach-Zehnder interferometer for sensing applications,” Proc. SPIE 8924, 892435 (2013).
[Crossref]

L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express 20(9), 10180–10185 (2012).
[Crossref] [PubMed]

Sun, L.-P.

Sun, Q.

Tai, Y. H.

Tan, Y.

Y. Tan, L. Sun, L. Jin, J. Li, and B. Guan, “Long period grating-based microfiber Mach-Zehnder interferometer for sensing applications,” Proc. SPIE 8924, 892435 (2013).
[Crossref]

L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express 20(9), 10180–10185 (2012).
[Crossref] [PubMed]

Tan, Y.-N.

Tang, M.

Tjin, S. C.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Tong, L.

X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[Crossref] [PubMed]

G. Vienne, Y. Li, X. Jiang, and L. Tong, “Effect of host polymer on microring resonators,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[Crossref]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Tsai, H. L.

Urquhart, P.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Vienne, G.

G. Vienne, Y. Li, X. Jiang, and L. Tong, “Effect of host polymer on microring resonators,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[Crossref]

X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[Crossref] [PubMed]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Wang, D.

Wang, D. N.

Wang, G.

Wang, L.

Wang, Y.

Wei, P. K.

Wei, T.

Weiland, M.

Wilkinson, J. S.

Wo, J.

Wolinski, T. R.

M. Kuczkowski, C. Ying, X. Quyen Dinh, P. P. Shum, K. A. Rutkowska, and T. R. Woliński, “Microfiber Sagnac Interferometer for sensing applications,” Photon. Lett. Poland 4(4), 134–136 (2012).
[Crossref]

Wu, Y.

Xiao, H.

Xie, X.

Xu, F.

Xu, R.

R. Xu, S. L. P. Lu, and D. Liu, “Experimental Characterization of a Vernier Strain Sensor Using Cascaded Fiber Rings,” IEEE Photon. Technol. Lett. 24(23), 2125–2128 (2012).
[Crossref]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Xuan, H.

W. Jin, H. Xuan, and W. Jin, “Long period gratings in highly birefringent microfibers,” Proc. SPIE 9157, 91577N (2014).
[Crossref]

Xue, Y.

Yang, M.

Yang, Q.

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried hetero structure ring resonator filters using vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

Yang, R.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Ying, C.

M. Kuczkowski, C. Ying, X. Quyen Dinh, P. P. Shum, K. A. Rutkowska, and T. R. Woliński, “Microfiber Sagnac Interferometer for sensing applications,” Photon. Lett. Poland 4(4), 134–136 (2012).
[Crossref]

Yu, Y. S.

Zamora, V.

Zhang, H.

Zhang, J.

J. Zhang, Q. Sun, R. Liang, W. Jia, X. Li, J. Wo, D. Liu, and P. Shum, “Microfiber Fabry–Perot Interferometer for Dual-Parameter Sensing,” J. Lightwave Technol. 31(10), 1608–1615 (2013).
[Crossref]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Zhang, L.

Zhang, P.

Zhang, W.

Zhu, B.

Zhu, C.

Zhu, S. N.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (4)

R. Xu, S. L. P. Lu, and D. Liu, “Experimental Characterization of a Vernier Strain Sensor Using Cascaded Fiber Rings,” IEEE Photon. Technol. Lett. 24(23), 2125–2128 (2012).
[Crossref]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried hetero structure ring resonator filters using vernier effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005).
[Crossref]

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” IEEE Photon. Technol. Lett. 23(13), 842–844 (2011).
[Crossref]

G. Vienne, Y. Li, X. Jiang, and L. Tong, “Effect of host polymer on microring resonators,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Liang, Q. Sun, J. Wo, and D. Liu, “Investigation on micro/nanofiber Bragg grating for refractive index sensing,” Opt. Commun. 285(6), 1128–1133 (2012).
[Crossref]

Opt. Express (10)

Y. Ran, Y.-N. Tan, L.-P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

F. Gao, H. Liu, C. Sheng, C. Zhu, and S. N. Zhu, “Refractive index sensor based on the leaky radiation of a microfiber,” Opt. Express 22(10), 12645–12652 (2014).
[Crossref] [PubMed]

D. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Opt. Express 17(26), 23817–23822 (2009).
[Crossref] [PubMed]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[Crossref] [PubMed]

V. Zamora, P. Lützow, M. Weiland, and D. Pergande, “Investigation of cascaded SiN microring resonators at 1.3 µm and 1.5 µm,” Opt. Express 21(23), 27550–27557 (2013).
[PubMed]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

P. Zhang, M. Tang, F. Gao, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref] [PubMed]

Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17(20), 18142–18147 (2009).
[Crossref] [PubMed]

L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express 20(9), 10180–10185 (2012).
[Crossref] [PubMed]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[Crossref] [PubMed]

Opt. Lett. (7)

Photon. Lett. Poland (1)

M. Kuczkowski, C. Ying, X. Quyen Dinh, P. P. Shum, K. A. Rutkowska, and T. R. Woliński, “Microfiber Sagnac Interferometer for sensing applications,” Photon. Lett. Poland 4(4), 134–136 (2012).
[Crossref]

Proc. SPIE (2)

Y. Tan, L. Sun, L. Jin, J. Li, and B. Guan, “Long period grating-based microfiber Mach-Zehnder interferometer for sensing applications,” Proc. SPIE 8924, 892435 (2013).
[Crossref]

W. Jin, H. Xuan, and W. Jin, “Long period gratings in highly birefringent microfibers,” Proc. SPIE 9157, 91577N (2014).
[Crossref]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Sensors (Basel) (1)

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The configurations of (a) single MKR and (b) CMKRs.

Fig. 2
Fig. 2

Transmission spectra of (a) MKR1, (b) MKR2 and (c) CMKRs with m = 10, N = 1.

Fig. 3
Fig. 3

The dependences of ER on the (a) coupling efficiencies k and (b) coupling loss coefficients r.

Fig. 4
Fig. 4

Transmission spectra of the CMKRs evolving as the RI of MKR2.

Fig. 5
Fig. 5

The fabrication process of the CMKRs.

Fig. 6
Fig. 6

The microscope images of (a) the waist region of an as-drawn microfiber, (b) coupling region with two knotting turns, and (c) a MKR with two coupling regions; (d)The experimental setup for RI sensing of the fabricated CMKRs (Insert: photo graph of a fabricated CMKRs transmitting visible light).

Fig. 7
Fig. 7

Vernier transmission spectrum of the fabricated CMKRs with ambient RI of MKR2 equaling to 1.3320, as well as the comparison with simulation result (Insert: The zoom view of the spectra within 1539nm-1540nm).

Fig. 8
Fig. 8

(a) Measured transmission spectra of the CMKRs with different ambient RIs of MKR2; (b) The dependence of wavelength shift on the ambient RI

Tables (1)

Tables Icon

Table 1 Simulation parameters of Fig. 3

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ ( E 3 E 4 )= 1 r 01 ( 1 k s1 j k s1 j k s1 1 k s1 )( E 1 E 2 ); ( E 6 E 7 )= 1 r 02 ( 1 k s2 j k s2 ) E 5 ; E 5 = E 3 exp[ ( α+j β 1 ) l 11 ]; E 2 = E 6 exp[ ( α+j β 1 ) l 12 ]
E 7 / E 1 = j ( 1 k s1 ) k s2 ( 1 r 01 )( 1 r 02 ) 1j k s1 ( 1 k s2 )( 1 r 01 )( 1 r 02 ) exp[ ( α+j β 1 ) l 11 ] exp[ ( α+j β 1 )( l 11 + l 12 ) ]
E 13 / E 1 = j k s3 ( 1 k s4 )( 1 r 03 )( 1 r 04 ) exp( j β 2 l 21 ) 1j ( 1 k s3 ) k s4 ( 1 r 03 )( 1 r 04 ) exp[ j β 2 ( l 21 + l 22 ) ] exp[ ( α+j β 1 ) l s ] j ( 1 k s1 ) k s2 ( 1 r 01 )( 1 r 02 ) exp( j β 1 l 11 ) 1j k s1 ( 1 k s2 )( 1 r 01 )( 1 r 02 ) exp[ j β 1 ( l 11 + l 12 ) ]
T= p { 1+4 q 1 sin 2 [ β 1 S 1 /2 +π/4 ] }{ 1+4 q 2 sin 2 [ β 2 S 2 /2 +π/4 ] } ; S 1 = l 11 + l 12 =2π R 1 ; S 2 = l 21 + l 22 =2π R 2 ; p= ( e ' 11 e ' 12 e ' 21 e ' 22 ) 2 ( 1 e 11 e 12 ) 2 ( 1 e 21 e 22 ) 2 exp[ 2α( l 12 + l 22 ) ]; q 1 = e 11 e 12 4 ( 1 e 11 e 12 ) 2 , q 2 = e 21 e 22 4 ( 1 e 21 e 22 ) 2 ; e 11 = k s1 1 2 ( 1 r 01 ) 1 2 exp( α l 11 ); e ' 11 = ( 1 k s1 ) 1 2 ( 1 r 01 ) 1 2 exp( α l 11 ) e 12 = ( 1 k s2 ) 1 2 ( 1 r 02 ) 1 2 exp( α l 12 ); e ' 12 = k s2 1 2 ( 1 r 02 ) 1 2 exp( α l 12 ) e 21 = ( 1- k s3 ) 1/2 ( 1 r 03 ) 1/2 exp( α l 21 ); e ' 21 = ( k s3 ) 1/2 ( 1 r 03 ) 1/2 exp( α l 21 ); e 22 = k s4 1/2 ( 1 r 04 ) 1/2 exp( α l 22 ); e ' 22 = ( 1- k s4 ) 1/2 ( 1 r 04 ) 1/2 exp( α l 22 );
R 1 R 2 = m+1/2 m+N+1/2 ;m=0,1,2,;N=1,2,3,
FS R c =m×FS R 1 =( m+1 )×FS R 2 , FS R 1 = λ 2 2π n eff1 R 1 ,FS R 2 = λ 2 2π n eff2 R 2
Δ λ 2 = λ 2 ( Δ n a / n eff2 )( Δ n eff2 / Δ n a )
Δλ=Δ λ 2 [ FS R 1 / ( FS R 1 FS R 2 ) ]
S= Δλ / Δ n a =( λ 2 / n eff2 )( Δ n eff2 / Δ n a )[ FS R 1 / ( FS R 1 FS R 2 ) ] =( λ 2 / n eff2 )( Δ n eff2 / Δ n a )( m+1 )
Δ n min = n eff2 ( FS R 1 FS R 2 ) / ( λ 2 Δ n eff2 / Δ n a )

Metrics