Abstract

We report here a photoconductive material for THz detection with sub-picosecond carrier lifetime made by C12 (Carbon) irradiation on commercially available semi-insulating (SI) GaAs. We are able to reduce the carrier lifetime of SI-GaAs down to sub-picosecond by irradiating it with various irradiation dosages of Carbon (C12) ions. With an increase of the irradiation dose from ~1012 /cm2 to ~1015 /cm2 the carrier lifetime of SI-GaAs monotonously decreases to 0.55 picosecond, whereas that of usual non-irradiated SI-GaAs is ~70 picosecond. This decreased carrier lifetime has resulted in a strong improvement in THz pulse detection compared with normal SI-GaAs. Improvement in signal to noise ratio as well as in detection bandwidth is observed. Carbon irradiated SI-GaAs appears to be an economical alternative to low temperature grown GaAs for fabrication of THz devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of photoexcited-carrier dynamics in GaAs photoconductive switches using dynamic terahertz emission microscopy

Hironaru Murakami, Shogo Fujiwara, Iwao Kawayama, and Masayoshi Tonouchi
Photon. Res. 4(3) A9-A15 (2016)

Ultrabroadband terahertz field detection by proton-bombarded InP photoconductive antennas

Tze-An Liu, Masahiko Tani, Makoto Nakajima, Masanori Hangyo, Kiyomi Sakai, Shin-ichi Nakashima, and Ci-Ling Pan
Opt. Express 12(13) 2954-2959 (2004)

Emission characteristics of ion-irradiated In0.53Ga0.47As based photoconductive antennas excited at 1.55 μm

J. Mangeney, N. Chimot, L. Meignien, N. Zerounian, P. Crozat, K. Blary, J.F. Lampin, and P. Mounaix
Opt. Express 15(14) 8943-8950 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
    [Crossref]
  3. A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
    [Crossref]
  4. S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
    [Crossref]
  5. S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. THz Waves 33(4), 431–454 (2012).
    [Crossref]
  6. C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1780 (2004).
    [Crossref] [PubMed]
  7. D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26(3), 101 (1975).
    [Crossref]
  8. E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
    [Crossref]
  9. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076 (1997).
    [Crossref]
  10. S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
    [Crossref]
  11. A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
    [Crossref]
  12. T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
    [Crossref]

2014 (1)

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

2013 (1)

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

2012 (2)

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. THz Waves 33(4), 431–454 (2012).
[Crossref]

A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
[Crossref]

2008 (2)

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (1)

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

2004 (1)

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1780 (2004).
[Crossref] [PubMed]

2003 (1)

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

1997 (1)

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076 (1997).
[Crossref]

1975 (1)

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26(3), 101 (1975).
[Crossref]

Auston, D. H.

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26(3), 101 (1975).
[Crossref]

Beere, H. E.

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Borri, S.

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Brener, I.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076 (1997).
[Crossref]

Cai, Y.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076 (1997).
[Crossref]

Castro-Camus, E.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Dreyhaupt, A.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Faist, J.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

Federici, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076 (1997).
[Crossref]

Ford, J.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

Fu, L.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Giovannini, M.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

Gowen, A.

A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
[Crossref]

Hangyo, M.

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Harris, G.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

Harris, J. S.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

Hatami, F.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

Helm, M.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Hoyler, N.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

Jagadish, C.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Johnston, M. B.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Kim, S. M.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

King, D.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

Köhler, K.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Kurian, A. W.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

Liu, T.

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Lloyd-Hughes, J.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Lopata, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076 (1997).
[Crossref]

Nakajima, M.

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Nanal, V.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Nitsche, S.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

O’Donnell, C. P.

A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
[Crossref]

O’Sullivan, C.

A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
[Crossref]

Pal, S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Pan, C.

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Patimisco, P.

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Peter, F.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Pfeiffer, L.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076 (1997).
[Crossref]

Pillay, R. G.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Prabhu, S. S.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Ritchie, D. A.

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Sampaolo, A.

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Scalari, G.

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

Scamarcio, G.

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Schmuttenmaer, C. A.

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1780 (2004).
[Crossref] [PubMed]

Schneider, H.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Singh, A.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Spagnolo, V.

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Surdi, H.

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

Tan, H. H.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Tani, M.

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Vitiello, M. S.

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

Wagner, M.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Winnerl, S.

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. THz Waves 33(4), 431–454 (2012).
[Crossref]

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Wynn, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076 (1997).
[Crossref]

Zimmermann, B.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

Appl. Phys. Lett. (6)

areS. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser,” Appl. Phys. Lett. 88(15), 153903 (2006).
[Crossref]

S. Borri, P. Patimisco, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “Terahertz quartz enhanced photo-acoustic sensor,” Appl. Phys. Lett. 103(2), 021105 (2013).
[Crossref]

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26(3), 101 (1975).
[Crossref]

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71(15), 2076 (1997).
[Crossref]

A. Singh, S. Pal, H. Surdi, S. S. Prabhu, V. Nanal, and R. G. Pillay, “Highly efficient and electrically robust carbon irradiated semi-insulating GaAs based photoconductive terahertz emitters,” Appl. Phys. Lett. 104(6), 063501 (2014).
[Crossref]

T. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Chem. Rev. (1)

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104(4), 1759–1780 (2004).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[Crossref]

J. Appl. Phys. (1)

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

J. Infrared Millim. THz Waves (1)

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. THz Waves 33(4), 431–454 (2012).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Trends Food Sci. Technol. (1)

A. Gowen, C. O’Sullivan, and C. P. O’Donnell, “Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control,” Trends Food Sci. Technol. 25(1), 40–46 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the electrodes on a photoconductor used for THz pulse detection. The THz pulse to be detected will be focused on the same spot of optical carrier excitation with almost matching arrival time of the 800 nm pulse. The photogenerated charge carriers will move in the presence of the electric field of the THz pulse and a current flow will be measured at the electrodes.
Fig. 2
Fig. 2 Schematic diagram of THz Time Domain Spectroscopy set up used to characterize the photoconductive THz detectors.
Fig. 3
Fig. 3 THz pulses recorded from different carbon irradiation dose photoconductive antennas (PCAs) with their theoretically predicted pulse shapes (a-e). In (f) the THz pulse shape recorded from the 3 highest dosages PCA detector is plotted together with the pulse shape recorded from the ZnTe electro optic crystal (continuous black curve).
Fig. 4
Fig. 4 FFTs of the THz pulses recorded from different carbon irradiation dose photoconductive antennas. The dotted lines are indicating the noise level.

Tables (1)

Tables Icon

Table 1 Carrier lifetimes and detection parameters of SI-GaAs and irradiated SI-GaAs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I( τ d ) E(t)n(t τ d )dt
n(t τ d )= n 0 exp[ ( t τ d )/ τ rec ]

Metrics