Abstract

Micro-particle assisted nano-imaging has proven its success in the past few years since it can magnify the nano-objects, especially the metallic objects, into an image then collected by a conventional microscope. Micro-shell, which is a novel design of micro-particle in the configuration of a hemisphere with a hollow core region, is proposed and optimized in this paper in order to obtain a long photonic jet far away from its flat surface, thus increasing its working distance. Its dependence on the configuration and refractive index is investigated numerically. A micro-shell with the outer and inner radii of 5 and 2.5 µm and the refractive index of 1.5 can focus the incident light of 400 nm wavelength 2.7 µm away from the micro-shell flat surface, although the photonic jet intensity decreases to 25.8% compared to the solid hemisphere. Meanwhile, the photonic jet length of the micro-shell under the incident light of 400 nm and 1000 nm wavelengths are 1.7 µm and 4.3 µm, respectively, because its hollow core region tends to reduce the angle variation of the Poynting vectors in the photonic jet. With the long working distance and long photonic jet, the micro-shell could be used to scan over a sample to obtain a large area image when coupled with a conventional microscope, which is especially useful for the samples with the rough surfaces.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic jets produced by dielectric micro cuboids

Cheng-Yang Liu
Appl. Opt. 54(29) 8694-8699 (2015)

Modulation of photonic nanojets generated by microspheres decorated with concentric rings

M. X. Wu, B. J. Huang, R. Chen, Y. Yang, J. F. Wu, R. Ji, X. D. Chen, and M. H. Hong
Opt. Express 23(15) 20096-20103 (2015)

Self-assembled dielectric microsphere array enhanced Raman scattering for large-area and ultra-long working distance confocal detection

Yinzhou Yan, Cheng Xing, Yanhua Jia, Yong Zeng, Yan Zhao, and Yijian Jiang
Opt. Express 23(20) 25854-25865 (2015)

References

  • View by:
  • |
  • |
  • |

  1. U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
    [Crossref]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  3. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
    [Crossref] [PubMed]
  4. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun. 2, 218 (2011).
    [Crossref] [PubMed]
  5. Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
    [Crossref] [PubMed]
  6. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [Crossref] [PubMed]
  7. W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
    [Crossref]
  8. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845 (2004).
    [Crossref]
  9. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005).
    [Crossref] [PubMed]
  10. H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, and S. Zhuang, “Near-field focusing of the dielectric microsphere with wavelength scale radius,” Opt. Express 21(2), 2434–2443 (2013).
    [Crossref] [PubMed]
  11. S. Lee, L. Li, Z. Wang, W. Guo, Y. Yan, and T. Wang, “Immersed transparent microsphere magnifying sub-diffraction-limited objects,” Appl. Opt. 52(30), 7265–7270 (2013).
    [Crossref] [PubMed]
  12. R. Ye, Y.-H. Ye, H. F. Ma, J. Ma, B. Wang, J. Yao, S. Liu, L. Cao, H. Xu, and J.-Y. Zhang, “Experimental far-field imaging properties of a ~5-μm diameter spherical lens,” Opt. Lett. 38(11), 1829–1831 (2013).
    [Crossref] [PubMed]
  13. S.-C. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17(5), 3722–3731 (2009).
    [Crossref] [PubMed]
  14. D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
    [Crossref] [PubMed]
  15. Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
    [Crossref]
  16. S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
    [Crossref]
  17. A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
    [Crossref]
  18. Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
    [Crossref] [PubMed]
  19. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008).
    [Crossref] [PubMed]
  20. Y. Ben-Aryeh, “Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films,” Appl. Phys. B 109(1), 165–170 (2012).
    [Crossref]

2014 (4)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

D. Grojo, N. Sandeau, L. Boarino, C. Constantinescu, N. De Leo, M. Laus, and K. Sparnacci, “Bessel-like photonic nanojets from core-shell sub-wavelength spheres,” Opt. Lett. 39(13), 3989–3992 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

Y. Shen, L. V. Wang, and J.-T. Shen, “Ultralong photonic nanojet formed by a two-layer dielectric microsphere,” Opt. Lett. 39(14), 4120–4123 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Y. Ben-Aryeh, “Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films,” Appl. Phys. B 109(1), 165–170 (2012).
[Crossref]

2011 (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun. 2, 218 (2011).
[Crossref] [PubMed]

2010 (1)

Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

2006 (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (2)

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845 (2004).
[Crossref]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[Crossref] [PubMed]

1994 (1)

1986 (1)

U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
[Crossref]

Astratov, V. N.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Backman, V.

Ben-Aryeh, Y.

Y. Ben-Aryeh, “Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films,” Appl. Phys. B 109(1), 165–170 (2012).
[Crossref]

Boarino, L.

Bonod, N.

Cao, L.

Chen, Z.

Chong, T. C.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845 (2004).
[Crossref]

Constantinescu, C.

Dal Negro, L.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Darafsheh, A.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

De Leo, N.

Devilez, A.

Dürig, U.

U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
[Crossref]

Feng, C.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Gachet, D.

Geints, Yu. E.

Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Gérard, D.

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Grojo, D.

Guo, H.

Guo, W.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, Z. Wang, W. Guo, Y. Yan, and T. Wang, “Immersed transparent microsphere magnifying sub-diffraction-limited objects,” Appl. Opt. 52(30), 7265–7270 (2013).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun. 2, 218 (2011).
[Crossref] [PubMed]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Han, Y.

Hell, S. W.

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Hong, M.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun. 2, 218 (2011).
[Crossref] [PubMed]

Hong, M. H.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845 (2004).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun. 2, 218 (2011).
[Crossref] [PubMed]

Kong, S.-C.

Laus, M.

Lee, S.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, Z. Wang, W. Guo, Y. Yan, and T. Wang, “Immersed transparent microsphere magnifying sub-diffraction-limited objects,” Appl. Opt. 52(30), 7265–7270 (2013).
[Crossref] [PubMed]

Li, L.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

S. Lee, L. Li, Z. Wang, W. Guo, Y. Yan, and T. Wang, “Immersed transparent microsphere magnifying sub-diffraction-limited objects,” Appl. Opt. 52(30), 7265–7270 (2013).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun. 2, 218 (2011).
[Crossref] [PubMed]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Li, X.

Lin, Y.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845 (2004).
[Crossref]

Liu, S.

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun. 2, 218 (2011).
[Crossref] [PubMed]

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun. 2, 218 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845 (2004).
[Crossref]

Ma, H. F.

Ma, J.

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

Panina, E. K.

Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Pohl, D. W.

U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
[Crossref]

Popov, E.

Rigneault, H.

Rohner, F.

U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
[Crossref]

Sandeau, N.

Shen, J.-T.

Shen, Y.

Sparnacci, K.

Stout, B.

Sui, G.

Taflove, A.

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Wang, B.

Wang, L. V.

Wang, Q. F.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845 (2004).
[Crossref]

Wang, T.

Wang, Y.

Wang, Z.

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

S. Lee, L. Li, Z. Wang, W. Guo, Y. Yan, and T. Wang, “Immersed transparent microsphere magnifying sub-diffraction-limited objects,” Appl. Opt. 52(30), 7265–7270 (2013).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun. 2, 218 (2011).
[Crossref] [PubMed]

Wang, Z. B.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845 (2004).
[Crossref]

Weng, X.

Wenger, J.

Whitehead, D. J.

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

Wichmann, J.

Xu, H.

Yan, Y.

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

S. Lee, L. Li, Z. Wang, W. Guo, Y. Yan, and T. Wang, “Immersed transparent microsphere magnifying sub-diffraction-limited objects,” Appl. Opt. 52(30), 7265–7270 (2013).
[Crossref] [PubMed]

Yao, J.

Ye, R.

Ye, Y.-H.

Zemlyanov, A. A.

Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Zhang, J.-Y.

Zhao, Y.

Zhuang, S.

ACS Nano (1)

Y. Yan, L. Li, C. Feng, W. Guo, S. Lee, and M. Hong, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8(2), 1809–1816 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Ben-Aryeh, “Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films,” Appl. Phys. B 109(1), 165–170 (2012).
[Crossref]

Appl. Phys. Lett. (2)

W. Guo, Z. B. Wang, L. Li, D. J. Whitehead, B. S. Luk’yanchuk, and Z. Liu, “Near-field laser parallel nanofabrication of arbitrary-shaped patterns,” Appl. Phys. Lett. 90(24), 243101 (2007).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101(14), 141128 (2012).
[Crossref]

Biophys. J. (1)

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (2)

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845 (2004).
[Crossref]

U. Dürig, D. W. Pohl, and F. Rohner, “Near-field optical-scanning microscopy,” J. Appl. Phys. 59(10), 3318 (1986).
[Crossref]

J. Opt. (1)

S. Lee, L. Li, and Z. Wang, “Optical resonances in microsphere photonic nanojets,” J. Opt. 16(1), 015704 (2014).
[Crossref]

Nat Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat Commun. 2, 218 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photonic nanojets of dielectric microspheres,” Opt. Commun. 283(23), 4775–4781 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Illustration of micro-shell with the outer and inner radii of R and r. The Poynting vectors distribution when the incident light transmits through (b) a micro-shell with refractive index of 1.5, outer and inner radii of 5 and 2.5 µm, (d) a solid hemisphere with the refractive index of 1.5 and radius of 5 µm, and (f) a sphere with refractive index of 1.5 and radius of 5 µm. Ray tracing when light transmits through (c) a micro-shell with refractive index of 1.5, outer and inner radii of 5 and 2.5 µm, (e) a solid hemisphere with the refractive index of 1.5 and radius of 5 µm, and (g) a sphere with refractive index of 1.5 and radius of 5 µm from the left.
Fig. 2
Fig. 2 Light intensity distributions when the light transmits through (a)-(j) the micro-shell with different radius contrast ratio, (k) microsphere (R = 5 μm) with n = 1.5, and (l) microsphere (R = 5 μm) with n = 1.3.
Fig. 3
Fig. 3 Light intensity distribution when the light transmits through the micro-shell with different refractive indices from 1.3 to 2.0.
Fig. 4
Fig. 4 (a)-(d) Light intensity distribution at different incident wavelengths from 400 to 1000 nm through micro-shell with outer and inner radii of 5 and 2.5 μm, refractive index of 1.5. (e) Photonic jet under white light by combining the light intensity under 4 different incident wavelengths 400, 600, 800, and 1000 nm. (f) The light intensity distribution along the axis (dash line) of micro-shell in (e).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k x 2 + k y 2 k z 2 = (n k 0 ) 2 ,

Metrics