Abstract

We present a novel and very efficient method for calculating quantum transport in quantum cascade lasers (QCLs). It follows the nonequilibrium Green’s function (NEGF) framework but sidesteps the calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. This method generalizes the phenomenological Büttiker probe model by taking into account individual scattering mechanisms. It is orders of magnitude more efficient than a fully self-consistent NEGF calculation for realistic devices. We apply this method to a new THz QCL design which works up to 250 K – according to our calculations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum cascade lasers: 20 years of challenges

Miriam Serena Vitiello, Giacomo Scalari, Benjamin Williams, and Paolo De Natale
Opt. Express 23(4) 5167-5182 (2015)

Design strategy for terahertz quantum dot cascade lasers

Benjamin A. Burnett and Benjamin S. Williams
Opt. Express 24(22) 25471-25481 (2016)

Spoof plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser: a feasibility study

Greg Sun, Jacob B. Khurgin, and Din Ping Tsai
Opt. Express 21(23) 28054-28061 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Datta, “Nanoscale device modeling: the Green’s function method,” Superlattices Microstruct. 28 (4), 253–278 (2000).
    [Crossref]
  2. A. Wacker, “Semiconductor superlattices: a model system for nonlinear transport,” Phys. Rep. 357 (1), 1–111 (2002).
    [Crossref]
  3. T. Grange, “Nanowire terahertz quantum cascade lasers,” Appl. Phys. Lett. 105 (14), 141105 (2014).
    [Crossref]
  4. T. Kubis and P. Vogl, “Assessment of approximations in nonequilibrium Green’s function theory,” Phys. Rev. B 83, 195304 (2011).
    [Crossref]
  5. P. Greck, Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures, Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann, and P. Vogl, eds.), vol. 105 (Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München e.V., München, 2012).
  6. M. Büttiker, “Role of quantum coherence in series resistors,” Phys. Rev. B 33 (5), 3020–3026 (1986).
    [Crossref]
  7. M. Büttiker, “Symmetry of electrical conduction,” IBM J. Res. Develop. 32 (3), 317–334 (1988).
    [Crossref]
  8. A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, “Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures,” J. Appl. Phys. 81 (12), 7880–7884 (1997).
    [Crossref]
  9. S. Li and E. Darve, “Extension and optimization of the FIND algorithm: Computing Green’s and less-than Green’s functions,” J. Comput. Phys. 231 (4), 1121–1139 (2012).
    [Crossref]
  10. P. Harrison, “The nature of the electron distribution functions in quantum cascade lasers,” Appl. Phys. Lett. 75 (18), 2800–2802 (1999).
    [Crossref]
  11. M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
    [Crossref]
  12. M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86 (11), 111115 (2005).
    [Crossref]
  13. M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
    [Crossref]
  14. M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
    [Crossref]
  15. M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
    [Crossref]
  16. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
    [Crossref]
  17. A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
    [Crossref]
  18. A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
    [Crossref]
  19. T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B 79 (19), 195323 (2009).
    [Crossref]
  20. T. Kubis, S. R. Mehrotra, and G. Klimeck, “Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett. 97 (26), 261106 (2010).
    [Crossref]
  21. A. Vizbaras, S. Katz, G. Boehm, and M.-C. Amann, “Short-injector quantum cascade laser emitting at 8-μ m wavelength with high slope efficiency,” IEEE Photon. Technol. Lett. 21 (19), 1384–1386 (2009).
    [Crossref]
  22. A. Friedrich, G. Boehm, M. C. Amann, and G. Scarpa, “Quantum-cascade lasers without injector regions operating above room temperature,” Appl. Phys. Lett. 86 (16), 161114 (2005).
    [Crossref]
  23. J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ∼ 7. 3 μ m above room temperature,” Semicond. Sci. Technol. 25 (12), 125015 (2010).
    [Crossref]
  24. E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
    [Crossref]
  25. C. Sirtori, H. Page, and C. Becker, “GaAs-based quantum cascade lasers,” Phil. Trans. R. Soc. Lond. A 359 (1780), 505–522 (2001).
    [Crossref]
  26. M. Garcia, E. Normand, C. R. Stanley, C. N. Ironside, C. D. Farmer, G. Duxbury, and N. Langford, “An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3,” Opt. Commun. 226 (1–6), 39–43 (2003).
    [Crossref]
  27. S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Nonlinear gain behavior in injectorless quantum cascade lasers,” Opt. Eng. 49 (11), 111107 (2010).
    [Crossref]
  28. G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18 (8), 8043–8052 (2010).
    [Crossref] [PubMed]
  29. A. Matyas, R. Chashmahcharagh, I. Kovacs, P. Lugli, K. Vijayraghavan, M. A. Belkin, and C. Jirauschek, “Improved terahertz quantum cascade laser with variable height barriers,” J. Appl. Phys. 111 (10), 103106 (2012).
    [Crossref]
  30. E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
    [Crossref]
  31. T. Kubis and P. Vogl, “Predictive quantum theory of current and optical emission in quantum cascade lasers,” Proc. SPIE 7230, 723019 (2009).
    [Crossref]
  32. A. Wacker, “Gain in quantum cascade lasers and superlattices: A quantum transport theory,” Phys. Rev. B 66 (8), 085326 (2002).
    [Crossref]
  33. M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
    [Crossref]
  34. T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83 (10), 1929–1931 (2003).
    [Crossref]
  35. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Ji-rauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20 (4), 3866–3876 (2012).
    [Crossref] [PubMed]

2014 (1)

T. Grange, “Nanowire terahertz quantum cascade lasers,” Appl. Phys. Lett. 105 (14), 141105 (2014).
[Crossref]

2012 (4)

S. Li and E. Darve, “Extension and optimization of the FIND algorithm: Computing Green’s and less-than Green’s functions,” J. Comput. Phys. 231 (4), 1121–1139 (2012).
[Crossref]

A. Matyas, R. Chashmahcharagh, I. Kovacs, P. Lugli, K. Vijayraghavan, M. A. Belkin, and C. Jirauschek, “Improved terahertz quantum cascade laser with variable height barriers,” J. Appl. Phys. 111 (10), 103106 (2012).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Ji-rauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20 (4), 3866–3876 (2012).
[Crossref] [PubMed]

2011 (1)

T. Kubis and P. Vogl, “Assessment of approximations in nonequilibrium Green’s function theory,” Phys. Rev. B 83, 195304 (2011).
[Crossref]

2010 (4)

T. Kubis, S. R. Mehrotra, and G. Klimeck, “Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett. 97 (26), 261106 (2010).
[Crossref]

J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ∼ 7. 3 μ m above room temperature,” Semicond. Sci. Technol. 25 (12), 125015 (2010).
[Crossref]

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Nonlinear gain behavior in injectorless quantum cascade lasers,” Opt. Eng. 49 (11), 111107 (2010).
[Crossref]

G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18 (8), 8043–8052 (2010).
[Crossref] [PubMed]

2009 (5)

T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B 79 (19), 195323 (2009).
[Crossref]

A. Vizbaras, S. Katz, G. Boehm, and M.-C. Amann, “Short-injector quantum cascade laser emitting at 8-μ m wavelength with high slope efficiency,” IEEE Photon. Technol. Lett. 21 (19), 1384–1386 (2009).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
[Crossref]

T. Kubis and P. Vogl, “Predictive quantum theory of current and optical emission in quantum cascade lasers,” Proc. SPIE 7230, 723019 (2009).
[Crossref]

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

2008 (2)

A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
[Crossref]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

2007 (2)

M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
[Crossref]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

2006 (2)

M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

2005 (2)

M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86 (11), 111115 (2005).
[Crossref]

A. Friedrich, G. Boehm, M. C. Amann, and G. Scarpa, “Quantum-cascade lasers without injector regions operating above room temperature,” Appl. Phys. Lett. 86 (16), 161114 (2005).
[Crossref]

2003 (2)

M. Garcia, E. Normand, C. R. Stanley, C. N. Ironside, C. D. Farmer, G. Duxbury, and N. Langford, “An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3,” Opt. Commun. 226 (1–6), 39–43 (2003).
[Crossref]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83 (10), 1929–1931 (2003).
[Crossref]

2002 (2)

A. Wacker, “Gain in quantum cascade lasers and superlattices: A quantum transport theory,” Phys. Rev. B 66 (8), 085326 (2002).
[Crossref]

A. Wacker, “Semiconductor superlattices: a model system for nonlinear transport,” Phys. Rep. 357 (1), 1–111 (2002).
[Crossref]

2001 (1)

C. Sirtori, H. Page, and C. Becker, “GaAs-based quantum cascade lasers,” Phil. Trans. R. Soc. Lond. A 359 (1780), 505–522 (2001).
[Crossref]

2000 (2)

S. Datta, “Nanoscale device modeling: the Green’s function method,” Superlattices Microstruct. 28 (4), 253–278 (2000).
[Crossref]

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

1999 (1)

P. Harrison, “The nature of the electron distribution functions in quantum cascade lasers,” Appl. Phys. Lett. 75 (18), 2800–2802 (1999).
[Crossref]

1997 (1)

A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, “Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures,” J. Appl. Phys. 81 (12), 7880–7884 (1997).
[Crossref]

1988 (1)

M. Büttiker, “Symmetry of electrical conduction,” IBM J. Res. Develop. 32 (3), 317–334 (1988).
[Crossref]

1986 (1)

M. Büttiker, “Role of quantum coherence in series resistors,” Phys. Rev. B 33 (5), 3020–3026 (1986).
[Crossref]

Aellen, T.

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83 (10), 1929–1931 (2003).
[Crossref]

Aers, G.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

Alton, J.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

Amann, M. C.

A. Friedrich, G. Boehm, M. C. Amann, and G. Scarpa, “Quantum-cascade lasers without injector regions operating above room temperature,” Appl. Phys. Lett. 86 (16), 161114 (2005).
[Crossref]

Amann, M.-C.

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Nonlinear gain behavior in injectorless quantum cascade lasers,” Opt. Eng. 49 (11), 111107 (2010).
[Crossref]

A. Vizbaras, S. Katz, G. Boehm, and M.-C. Amann, “Short-injector quantum cascade laser emitting at 8-μ m wavelength with high slope efficiency,” IEEE Photon. Technol. Lett. 21 (19), 1384–1386 (2009).
[Crossref]

Amanti, M. I.

Andrews, A. M.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
[Crossref]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

Ban, D.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Ji-rauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20 (4), 3866–3876 (2012).
[Crossref] [PubMed]

Baranov, A.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

Barbieri, S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

Beck, M.

G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18 (8), 8043–8052 (2010).
[Crossref] [PubMed]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83 (10), 1929–1931 (2003).
[Crossref]

Becker, C.

C. Sirtori, H. Page, and C. Becker, “GaAs-based quantum cascade lasers,” Phil. Trans. R. Soc. Lond. A 359 (1780), 505–522 (2001).
[Crossref]

Beere, H. E.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
[Crossref]

Belkin, M. A.

A. Matyas, R. Chashmahcharagh, I. Kovacs, P. Lugli, K. Vijayraghavan, M. A. Belkin, and C. Jirauschek, “Improved terahertz quantum cascade laser with variable height barriers,” J. Appl. Phys. 111 (10), 103106 (2012).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
[Crossref]

Belyanin, A.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
[Crossref]

Benveniste, E.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

Benz, A.

T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B 79 (19), 195323 (2009).
[Crossref]

A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
[Crossref]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

Blaser, S.

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83 (10), 1929–1931 (2003).
[Crossref]

Boehm, G.

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Nonlinear gain behavior in injectorless quantum cascade lasers,” Opt. Eng. 49 (11), 111107 (2010).
[Crossref]

A. Vizbaras, S. Katz, G. Boehm, and M.-C. Amann, “Short-injector quantum cascade laser emitting at 8-μ m wavelength with high slope efficiency,” IEEE Photon. Technol. Lett. 21 (19), 1384–1386 (2009).
[Crossref]

A. Friedrich, G. Boehm, M. C. Amann, and G. Scarpa, “Quantum-cascade lasers without injector regions operating above room temperature,” Appl. Phys. Lett. 86 (16), 161114 (2005).
[Crossref]

Büttiker, M.

M. Büttiker, “Symmetry of electrical conduction,” IBM J. Res. Develop. 32 (3), 317–334 (1988).
[Crossref]

M. Büttiker, “Role of quantum coherence in series resistors,” Phys. Rev. B 33 (5), 3020–3026 (1986).
[Crossref]

Capasso, F.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
[Crossref]

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

Chan, C. W. I.

Chashmahcharagh, R.

A. Matyas, R. Chashmahcharagh, I. Kovacs, P. Lugli, K. Vijayraghavan, M. A. Belkin, and C. Jirauschek, “Improved terahertz quantum cascade laser with variable height barriers,” J. Appl. Phys. 111 (10), 103106 (2012).
[Crossref]

Cho, A. Y.

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

Colombelli, R.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

Darve, E.

S. Li and E. Darve, “Extension and optimization of the FIND algorithm: Computing Green’s and less-than Green’s functions,” J. Comput. Phys. 231 (4), 1121–1139 (2012).
[Crossref]

Datta, S.

S. Datta, “Nanoscale device modeling: the Green’s function method,” Superlattices Microstruct. 28 (4), 253–278 (2000).
[Crossref]

Davies, A. G.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
[Crossref]

Dean, P.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

Delteil, A.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

Deutsch, C.

T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B 79 (19), 195323 (2009).
[Crossref]

A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
[Crossref]

Devenson, J.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

Dhillon, S. S.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

Dupont, E.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Ji-rauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20 (4), 3866–3876 (2012).
[Crossref] [PubMed]

Duxbury, G.

M. Garcia, E. Normand, C. R. Stanley, C. N. Ironside, C. D. Farmer, G. Duxbury, and N. Langford, “An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3,” Opt. Commun. 226 (1–6), 39–43 (2003).
[Crossref]

Faist, J.

G. Scalari, M. I. Amanti, C. Walther, R. Terazzi, M. Beck, and J. Faist, “Broadband THz lasing from a photon-phonon quantum cascade structure,” Opt. Express 18 (8), 8043–8052 (2010).
[Crossref] [PubMed]

M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
[Crossref]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83 (10), 1929–1931 (2003).
[Crossref]

Farmer, C. D.

M. Garcia, E. Normand, C. R. Stanley, C. N. Ironside, C. D. Farmer, G. Duxbury, and N. Langford, “An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3,” Opt. Commun. 226 (1–6), 39–43 (2003).
[Crossref]

Fasching, G.

T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B 79 (19), 195323 (2009).
[Crossref]

A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
[Crossref]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

Fathololoumi, S.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Ji-rauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20 (4), 3866–3876 (2012).
[Crossref] [PubMed]

Friedrich, A.

A. Friedrich, G. Boehm, M. C. Amann, and G. Scarpa, “Quantum-cascade lasers without injector regions operating above room temperature,” Appl. Phys. Lett. 86 (16), 161114 (2005).
[Crossref]

Galick, A. T.

A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, “Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures,” J. Appl. Phys. 81 (12), 7880–7884 (1997).
[Crossref]

Garcia, M.

M. Garcia, E. Normand, C. R. Stanley, C. N. Ironside, C. D. Farmer, G. Duxbury, and N. Langford, “An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3,” Opt. Commun. 226 (1–6), 39–43 (2003).
[Crossref]

Gini, E.

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83 (10), 1929–1931 (2003).
[Crossref]

Giovannini, M.

M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
[Crossref]

Gmachl, C.

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

Golka, S.

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

Grange, T.

T. Grange, “Nanowire terahertz quantum cascade lasers,” Appl. Phys. Lett. 105 (14), 141105 (2014).
[Crossref]

Greck, P.

P. Greck, Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures, Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann, and P. Vogl, eds.), vol. 105 (Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München e.V., München, 2012).

Green, R. P.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
[Crossref]

Gresch, T.

M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
[Crossref]

Harrison, P.

P. Harrison, “The nature of the electron distribution functions in quantum cascade lasers,” Appl. Phys. Lett. 75 (18), 2800–2802 (1999).
[Crossref]

Hofstetter, D.

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83 (10), 1929–1931 (2003).
[Crossref]

Hoyler, N.

M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
[Crossref]

Hu, Q.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Ji-rauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20 (4), 3866–3876 (2012).
[Crossref] [PubMed]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86 (11), 111115 (2005).
[Crossref]

Ironside, C. N.

M. Garcia, E. Normand, C. R. Stanley, C. N. Ironside, C. D. Farmer, G. Duxbury, and N. Langford, “An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3,” Opt. Commun. 226 (1–6), 39–43 (2003).
[Crossref]

Jirauschek, C.

A. Matyas, R. Chashmahcharagh, I. Kovacs, P. Lugli, K. Vijayraghavan, M. A. Belkin, and C. Jirauschek, “Improved terahertz quantum cascade laser with variable height barriers,” J. Appl. Phys. 111 (10), 103106 (2012).
[Crossref]

Ji-rauschek, C.

Jukam, N.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

Katz, S.

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Nonlinear gain behavior in injectorless quantum cascade lasers,” Opt. Eng. 49 (11), 111107 (2010).
[Crossref]

A. Vizbaras, S. Katz, G. Boehm, and M.-C. Amann, “Short-injector quantum cascade laser emitting at 8-μ m wavelength with high slope efficiency,” IEEE Photon. Technol. Lett. 21 (19), 1384–1386 (2009).
[Crossref]

Khanna, S. P.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
[Crossref]

Klang, P.

A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
[Crossref]

Klimeck, G.

T. Kubis, S. R. Mehrotra, and G. Klimeck, “Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett. 97 (26), 261106 (2010).
[Crossref]

Kovacs, I.

A. Matyas, R. Chashmahcharagh, I. Kovacs, P. Lugli, K. Vijayraghavan, M. A. Belkin, and C. Jirauschek, “Improved terahertz quantum cascade laser with variable height barriers,” J. Appl. Phys. 111 (10), 103106 (2012).
[Crossref]

Kubis, T.

T. Kubis and P. Vogl, “Assessment of approximations in nonequilibrium Green’s function theory,” Phys. Rev. B 83, 195304 (2011).
[Crossref]

T. Kubis, S. R. Mehrotra, and G. Klimeck, “Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett. 97 (26), 261106 (2010).
[Crossref]

T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B 79 (19), 195323 (2009).
[Crossref]

T. Kubis and P. Vogl, “Predictive quantum theory of current and optical emission in quantum cascade lasers,” Proc. SPIE 7230, 723019 (2009).
[Crossref]

Kumar, S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86 (11), 111115 (2005).
[Crossref]

Laframboise, S. R.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Ji-rauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20 (4), 3866–3876 (2012).
[Crossref] [PubMed]

Langford, N.

M. Garcia, E. Normand, C. R. Stanley, C. N. Ironside, C. D. Farmer, G. Duxbury, and N. Langford, “An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3,” Opt. Commun. 226 (1–6), 39–43 (2003).
[Crossref]

Li, S.

S. Li and E. Darve, “Extension and optimization of the FIND algorithm: Computing Green’s and less-than Green’s functions,” J. Comput. Phys. 231 (4), 1121–1139 (2012).
[Crossref]

Lindskog, M.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

Linfield, E. H.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
[Crossref]

Liu, H. C.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Ji-rauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20 (4), 3866–3876 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

Lops, A.

M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
[Crossref]

Losco, T.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
[Crossref]

Lugli, P.

A. Matyas, R. Chashmahcharagh, I. Kovacs, P. Lugli, K. Vijayraghavan, M. A. Belkin, and C. Jirauschek, “Improved terahertz quantum cascade laser with variable height barriers,” J. Appl. Phys. 111 (10), 103106 (2012).
[Crossref]

Madéo, J.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

Martl, M.

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

Matyas, A.

A. Matyas, R. Chashmahcharagh, I. Kovacs, P. Lugli, K. Vijayraghavan, M. A. Belkin, and C. Jirauschek, “Improved terahertz quantum cascade laser with variable height barriers,” J. Appl. Phys. 111 (10), 103106 (2012).
[Crossref]

Mátyás, A.

Mehrotra, S. R.

T. Kubis, S. R. Mehrotra, and G. Klimeck, “Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett. 97 (26), 261106 (2010).
[Crossref]

Normand, E.

M. Garcia, E. Normand, C. R. Stanley, C. N. Ironside, C. D. Farmer, G. Duxbury, and N. Langford, “An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3,” Opt. Commun. 226 (1–6), 39–43 (2003).
[Crossref]

Oustinov, D.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

Pacelli, A.

A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, “Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures,” J. Appl. Phys. 81 (12), 7880–7884 (1997).
[Crossref]

Page, H.

C. Sirtori, H. Page, and C. Becker, “GaAs-based quantum cascade lasers,” Phil. Trans. R. Soc. Lond. A 359 (1780), 505–522 (2001).
[Crossref]

Pflügl, C.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
[Crossref]

Ravaioli, U.

A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, “Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures,” J. Appl. Phys. 81 (12), 7880–7884 (1997).
[Crossref]

Razavipour, S. G.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

Razeghi, M.

J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ∼ 7. 3 μ m above room temperature,” Semicond. Sci. Technol. 25 (12), 125015 (2010).
[Crossref]

Reno, J. L.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86 (11), 111115 (2005).
[Crossref]

Ritchie, D. A.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

Roch, T.

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

Sagnes, I.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

Salih, M.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

Scalari, G.

Scamarcio, G.

M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86 (11), 111115 (2005).
[Crossref]

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

Scarpa, G.

A. Friedrich, G. Boehm, M. C. Amann, and G. Scarpa, “Quantum-cascade lasers without injector regions operating above room temperature,” Appl. Phys. Lett. 86 (16), 161114 (2005).
[Crossref]

Schrenk, W.

A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
[Crossref]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

Sirtori, C.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

C. Sirtori, H. Page, and C. Becker, “GaAs-based quantum cascade lasers,” Phil. Trans. R. Soc. Lond. A 359 (1780), 505–522 (2001).
[Crossref]

Sivco, D. L.

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

Slivken, S.

J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ∼ 7. 3 μ m above room temperature,” Semicond. Sci. Technol. 25 (12), 125015 (2010).
[Crossref]

Spagnolo, V.

M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86 (11), 111115 (2005).
[Crossref]

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

Stanley, C. R.

M. Garcia, E. Normand, C. R. Stanley, C. N. Ironside, C. D. Farmer, G. Duxbury, and N. Langford, “An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3,” Opt. Commun. 226 (1–6), 39–43 (2003).
[Crossref]

Strasser, G.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
[Crossref]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

Striccoli, M.

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

Teissier, R.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

Terazzi, R.

Tignon, J.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

Tredicucci, A.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
[Crossref]

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

Trellakis, A.

A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, “Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures,” J. Appl. Phys. 81 (12), 7880–7884 (1997).
[Crossref]

Troccoli, M.

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

Unterrainer, K.

A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
[Crossref]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

Vasanelli, A.

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

Vijayraghavan, K.

A. Matyas, R. Chashmahcharagh, I. Kovacs, P. Lugli, K. Vijayraghavan, M. A. Belkin, and C. Jirauschek, “Improved terahertz quantum cascade laser with variable height barriers,” J. Appl. Phys. 111 (10), 103106 (2012).
[Crossref]

Vitiello, M. S.

M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86 (11), 111115 (2005).
[Crossref]

Vizbaras, A.

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Nonlinear gain behavior in injectorless quantum cascade lasers,” Opt. Eng. 49 (11), 111107 (2010).
[Crossref]

A. Vizbaras, S. Katz, G. Boehm, and M.-C. Amann, “Short-injector quantum cascade laser emitting at 8-μ m wavelength with high slope efficiency,” IEEE Photon. Technol. Lett. 21 (19), 1384–1386 (2009).
[Crossref]

Vogl, P.

T. Kubis and P. Vogl, “Assessment of approximations in nonequilibrium Green’s function theory,” Phys. Rev. B 83, 195304 (2011).
[Crossref]

T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B 79 (19), 195323 (2009).
[Crossref]

T. Kubis and P. Vogl, “Predictive quantum theory of current and optical emission in quantum cascade lasers,” Proc. SPIE 7230, 723019 (2009).
[Crossref]

Wacker, A.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

A. Wacker, “Semiconductor superlattices: a model system for nonlinear transport,” Phys. Rep. 357 (1), 1–111 (2002).
[Crossref]

A. Wacker, “Gain in quantum cascade lasers and superlattices: A quantum transport theory,” Phys. Rev. B 66 (8), 085326 (2002).
[Crossref]

Walther, C.

Wang, Q. J.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
[Crossref]

Wasilewski, Z. R.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Ji-rauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20 (4), 3866–3876 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

Williams, B. S.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86 (11), 111115 (2005).
[Crossref]

Worrall, C.

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

Yeh, C.

T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B 79 (19), 195323 (2009).
[Crossref]

Yu, J. S.

J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ∼ 7. 3 μ m above room temperature,” Semicond. Sci. Technol. 25 (12), 125015 (2010).
[Crossref]

Appl. Phys. Lett. (13)

P. Harrison, “The nature of the electron distribution functions in quantum cascade lasers,” Appl. Phys. Lett. 75 (18), 2800–2802 (1999).
[Crossref]

M. Troccoli, G. Scamarcio, V. Spagnolo, A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, and M. Striccoli, “Electronic distribution in superlattice quantum cascade lasers,” Appl. Phys. Lett. 77 (8), 1088–1090 (2000).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Measurement of subband electronic temperatures and population inversion in THz quantum-cascade lasers,” Appl. Phys. Lett. 86 (11), 111115 (2005).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, T. Losco, R. P. Green, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Electron-lattice coupling in bound-to-continuum THz quantum-cascade lasers,” Appl. Phys. Lett. 88 (24), 241109 (2006).
[Crossref]

M. S. Vitiello, G. Scamarcio, V. Spagnolo, C. Worrall, H. E. Beere, D. A. Ritchie, C. Sirtori, J. Alton, and S. Barbieri, “Subband electronic temperatures and electron-lattice energy relaxation in terahertz quantum cascade lasers with different conduction band offsets,” Appl. Phys. Lett. 89 (13), 131114 (2006).
[Crossref]

M. S. Vitiello, T. Gresch, A. Lops, V. Spagnolo, G. Scamarcio, N. Hoyler, M. Giovannini, and J. Faist, “Influence of InAs, AlAs δ layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers,” Appl. Phys. Lett. 91 (16), 161111 (2007).
[Crossref]

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94 (25), 251108 (2009).
[Crossref]

A. Benz, G. Fasching, A. M. Andrews, M. Martl, K. Unterrainer, T. Roch, W. Schrenk, S. Golka, and G. Strasser, “Influence of doping on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 90 (10), 101107 (2007).
[Crossref]

T. Grange, “Nanowire terahertz quantum cascade lasers,” Appl. Phys. Lett. 105 (14), 141105 (2014).
[Crossref]

T. Kubis, S. R. Mehrotra, and G. Klimeck, “Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett. 97 (26), 261106 (2010).
[Crossref]

A. Friedrich, G. Boehm, M. C. Amann, and G. Scarpa, “Quantum-cascade lasers without injector regions operating above room temperature,” Appl. Phys. Lett. 86 (16), 161114 (2005).
[Crossref]

E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, “Influence of the material parameters on quantum cascade devices,” Appl. Phys. Lett. 93 (13), 131108 (2008).
[Crossref]

T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett. 83 (10), 1929–1931 (2003).
[Crossref]

IBM J. Res. Develop. (1)

M. Büttiker, “Symmetry of electrical conduction,” IBM J. Res. Develop. 32 (3), 317–334 (1988).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Topics Quantum Electron. 15 (3), 952–967 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Vizbaras, S. Katz, G. Boehm, and M.-C. Amann, “Short-injector quantum cascade laser emitting at 8-μ m wavelength with high slope efficiency,” IEEE Photon. Technol. Lett. 21 (19), 1384–1386 (2009).
[Crossref]

J. Appl. Phys. (3)

A. Trellakis, A. T. Galick, A. Pacelli, and U. Ravaioli, “Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures,” J. Appl. Phys. 81 (12), 7880–7884 (1997).
[Crossref]

A. Matyas, R. Chashmahcharagh, I. Kovacs, P. Lugli, K. Vijayraghavan, M. A. Belkin, and C. Jirauschek, “Improved terahertz quantum cascade laser with variable height barriers,” J. Appl. Phys. 111 (10), 103106 (2012).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111 (7), 073111 (2012).
[Crossref]

J. Comput. Phys. (1)

S. Li and E. Darve, “Extension and optimization of the FIND algorithm: Computing Green’s and less-than Green’s functions,” J. Comput. Phys. 231 (4), 1121–1139 (2012).
[Crossref]

Mater. Sci. Eng. B (1)

A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, “Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers,” Mater. Sci. Eng. B 147 (2–3), 152–155 (2008).
[Crossref]

Opt. Commun. (1)

M. Garcia, E. Normand, C. R. Stanley, C. N. Ironside, C. D. Farmer, G. Duxbury, and N. Langford, “An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3,” Opt. Commun. 226 (1–6), 39–43 (2003).
[Crossref]

Opt. Eng. (1)

S. Katz, A. Vizbaras, G. Boehm, and M.-C. Amann, “Nonlinear gain behavior in injectorless quantum cascade lasers,” Opt. Eng. 49 (11), 111107 (2010).
[Crossref]

Opt. Express (2)

Phil. Trans. R. Soc. Lond. A (1)

C. Sirtori, H. Page, and C. Becker, “GaAs-based quantum cascade lasers,” Phil. Trans. R. Soc. Lond. A 359 (1780), 505–522 (2001).
[Crossref]

Phys. Rep. (1)

A. Wacker, “Semiconductor superlattices: a model system for nonlinear transport,” Phys. Rep. 357 (1), 1–111 (2002).
[Crossref]

Phys. Rev. B (4)

T. Kubis and P. Vogl, “Assessment of approximations in nonequilibrium Green’s function theory,” Phys. Rev. B 83, 195304 (2011).
[Crossref]

T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, “Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers,” Phys. Rev. B 79 (19), 195323 (2009).
[Crossref]

M. Büttiker, “Role of quantum coherence in series resistors,” Phys. Rev. B 33 (5), 3020–3026 (1986).
[Crossref]

A. Wacker, “Gain in quantum cascade lasers and superlattices: A quantum transport theory,” Phys. Rev. B 66 (8), 085326 (2002).
[Crossref]

Proc. SPIE (1)

T. Kubis and P. Vogl, “Predictive quantum theory of current and optical emission in quantum cascade lasers,” Proc. SPIE 7230, 723019 (2009).
[Crossref]

Semicond. Sci. Technol. (1)

J. S. Yu, S. Slivken, and M. Razeghi, “Injector doping level-dependent continuous-wave operation of InP-based QCLs at λ ∼ 7. 3 μ m above room temperature,” Semicond. Sci. Technol. 25 (12), 125015 (2010).
[Crossref]

Superlattices Microstruct. (1)

S. Datta, “Nanoscale device modeling: the Green’s function method,” Superlattices Microstruct. 28 (4), 253–278 (2000).
[Crossref]

Other (1)

P. Greck, Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures, Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann, and P. Vogl, eds.), vol. 105 (Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München e.V., München, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Left: The standard Büttiker probe model associates a single momentum and energy sink with each device grid point i in position space using a phenomenological scattering parameter η, which is fixed during the calculation. Right: The proposed multi-scattering Büttiker probe model accounts for individual scattering mechanisms such as longitudinal acoustic (LA) or longitudinal optical (LO) phonon scattering by including multiple scattering potentials for each node that are calculated self-consistently.

Fig. 2
Fig. 2

(a) Calculated conduction band profile (white line) and contour plot of the energy and position resolved spectral function A(z = z,Ez) at vanishing in-plane momentum k = 0 for the suggested QCL at the threshold bias voltage of 36 mV per period and a lattice temperature of 100 K. (b) Corresponding contour plot of the energy and position resolved current density.

Fig. 3
Fig. 3

(a) Operation scheme of the novel QCL design. The red arrows indicate LO phonon emissions and the blue arrows indicate photon emissions. The two wells are labeled with ‘A’ and ‘B’ and only well ‘A’ is doped. (b) Calculated contour plot of the position resolved optical intensity gain as a function of the photon energy. The black solid contour line encloses the area of positive optical gain. The white solid line indicates the conduction band profile and is only meant to guide the eye. It is not related to the photon energy axis. The applied bias voltage is 36 mV and the temperature is 100 K.

Fig. 4
Fig. 4

(a) Calculated optical intensity gain as a function of the lattice temperature. The solid black line was calculated for the QCL proposed in [20] whereas the solid blue line is calculated for the novel QCL design. (b) Calculated optical intensity gain as a function of the photon energy for the novel QCL design for various temperatures.

Fig. 5
Fig. 5

Calculated DC current as a function of the applied bias voltage for the novel QCL design for various temperatures. The current–voltage characteristics do not show any negative differential resistance and thus indicate an electrically stable design.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

H ( z , k ) = H L ( z ) + H T ( z , k ) ,
H L ( z ) = 2 2 d d z ( 1 m ( z ) d d z ) + E c , 0 ( z ) e ϕ ( z ) ,
H T ( z , k ) = 2 k 2 2 m * ( z ) ,
· ( ε 0 ε s ( z ) ϕ ( z ) ) = e ( N D + ( z ) n ( z , ϕ ) ) .
G R = ( E 1 H Σ R ) 1 ,
Σ R = Σ C R + G R D R + G < D < ,
Σ < = Σ C < + G < D < ,
G < = G R Σ < G R .
E = E z + E = E z + 2 k 2 2 m * ,
G ( k , E ) G ( E E ) G ( E z ) .
Σ R = Σ C R + Σ B R ,
Σ C R = Σ S R + Σ D R ,
Σ S R ( 1 , 1 , E z ) = t exp ( i k S a ) ,
Σ D R ( N , N , E z ) = t exp ( i k D a ) ,
t = 2 2 m * a 2 .
E z ( k ) = E c + 2 t ( 1 cos ( k a ) ) ,
B ( z , E z ) = i η ( z ) ,
B ( z , E z ) = B LA ( z , E z ) + B LO ( z , E z ) ,
ρ ( z , E z ) = 1 2 π A ( z , z , E z ) .
A = i ( G R G R ) = 2 ( G R ) ,
B LA ( z , E z ) = i V D 2 k B T 8 π ρ M v s 2 E LA E z E LA E z + E LA d E z ρ ( z , E z ) ,
B LO ( z , E z ) = i e 2 ξ E LO 32 π ε 0 ( ε 1 ε s 1 )   [ ( 1 + N LO ) ρ ( z , E z E LO ) + N LO ρ ( z , E z + E LO ) ] ,
N LO = ( exp ( E LO k B T ) 1 ) 1 .
Σ p R ( z , z , E z ) = B ( z , E z ) δ ( z z p ) .
Σ B R ( z , z , E z ) = p = 1 N Σ p R ( z , z , E z ) .
G < ( z , z , E z ) = i F 0 ( E z , μ ) A ( z , z , E z ) .
n ( z , E z ) = i 2 π G < ( z , z , E z ) .
G < ( z , z , E z ) = i ( F 0 , S ( E z , μ S ) A S ( z , z , E z ) + F 0 , D ( E z , μ D ) A D ( z , z , E z ) ) .
A B ( z , z , E z ) = p = 1 N A p ( z , z , E z ) .
A p = G R Γ p G R .
Γ p = i ( Σ p R Σ p R ) .
G < ( z , z , E z ) = i ( i = S , D F 0 , i ( E z , μ i ) A i ( z , z , E z ) + p = 1 N F 0 , p ( E z , μ p ) A p ( z , z , E z ) ) ,
F 0 ( z , E z ) = g m * ( z ) k B T 2 π 2 ln ( 1 + exp ( E z μ ( z ) k B T ) ) ,
j p =   d E z j p ( E z ) = 0.
F ( z , E z ) = c ( z ) F S ( E z ) + ( 1 c ( z ) ) F D ( E z ) .

Metrics