Abstract

Photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers suffers from poor spectral purity. A stabilization approach based on optical modulation sideband injection locking is investigated. An optical signal carrying a highly correlated modulation sideband comb simultaneously injection-locks the regeneration of the optical carrier and the lower oscillation sideband in the dynamics, establishing a phase-locking between the two spectral components. A linewidth of below 1 Hz is therefore achieved for microwave generation up to at least 40 GHz. Because of the frequency multiplication in yielding the comb-like optical signal, only an electronic microwave reference at the tenth subharmonic or higher of the generated microwave frequency is required.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers

Kai-Hung Lo, Sheng-Kwang Hwang, and Silvano Donati
Opt. Express 22(15) 18648-18661 (2014)

High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation

Li Fan, Guangqiong Xia, Jianjun Chen, Xi Tang, Qing Liang, and Zhengmao Wu
Opt. Express 24(16) 18252-18265 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
    [Crossref]
  2. S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
    [Crossref]
  3. T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
    [Crossref] [PubMed]
  4. B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
    [Crossref]
  5. V. Kovanis, T. Erneux, and A. Gavrielides, “Largely detuned injection-locked semiconductor lasers,” Opt. Commun. 159, 177–183 (1999).
    [Crossref]
  6. M. Nizette, T. Erneux, A. Gavrielides, and V. Kovanis, “Stability and bifurcations of periodically modulated, optically injected laser diodes,” Phys. Rev. E 63, 026212 (2001).
    [Crossref]
  7. S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
    [Crossref]
  8. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
    [Crossref]
  9. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
    [Crossref] [PubMed]
  10. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
    [Crossref] [PubMed]
  11. S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34, 812–814 (2009).
    [Crossref] [PubMed]
  12. C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34, 3821–3823 (2009).
    [Crossref] [PubMed]
  13. X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
    [Crossref]
  14. C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
    [Crossref]
  15. Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
    [Crossref] [PubMed]
  16. Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).
    [Crossref] [PubMed]
  17. T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
    [Crossref]
  18. A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
    [Crossref]
  19. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
    [Crossref]
  20. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
    [Crossref] [PubMed]
  21. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
    [Crossref]
  22. Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
    [Crossref]
  23. A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express. 20, 13390–13401 (2012).
    [Crossref] [PubMed]
  24. J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38, 344–346 (2013).
    [Crossref] [PubMed]
  25. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
    [Crossref]
  26. K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22, 18648–18661 (2014).
    [Crossref] [PubMed]
  27. U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
    [Crossref]
  28. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
    [Crossref]
  29. C. T. Lin, P. T. Shih, W. J. Jiang, J. Chen, P. C. Peng, and S. Chi, “A continuously tunable and filterless optical millimeter-wave generation via frequency octupling,” Opt. Express 17, 19749–19756 (2009).
    [Crossref] [PubMed]
  30. G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216 (1984).
    [Crossref]
  31. S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Progress in Quantum Electron. 36, 293–341 (2012).
    [Crossref]
  32. I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of key-enabling components for remote millimetric wave generation in radio over fiber networks,” Opt. Laser Technol. 49, 213–226 (2013).
    [Crossref]
  33. F. van Dijk, A. Enard, X. Buet, F. Lelarge, and G.H. Duan, “Phase noise reduction of a quantum dash mode-locked laser in a millimeter-wave coupled optoelectronic oscillator,” J. Lightwave Technol. 26, 2789–2794 (2008).
    [Crossref]
  34. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon. 7, 118–122 (2013).
    [Crossref]
  35. M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
    [Crossref]
  36. L. Goldberg, H. F. Taylor, and J. F. Weller, “FM sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
    [Crossref]
  37. R. P. Braun, G. Grosskopf, D. Pohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10, 728–730 (1998).
    [Crossref]

2014 (2)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22, 18648–18661 (2014).
[Crossref] [PubMed]

2013 (6)

J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38, 344–346 (2013).
[Crossref] [PubMed]

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of key-enabling components for remote millimetric wave generation in radio over fiber networks,” Opt. Laser Technol. 49, 213–226 (2013).
[Crossref]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon. 7, 118–122 (2013).
[Crossref]

2012 (3)

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express. 20, 13390–13401 (2012).
[Crossref] [PubMed]

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Progress in Quantum Electron. 36, 293–341 (2012).
[Crossref]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

2011 (2)

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[Crossref]

2010 (2)

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[Crossref]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[Crossref]

2009 (3)

2008 (1)

2007 (1)

2006 (2)

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[Crossref] [PubMed]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[Crossref]

2004 (2)

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

2002 (1)

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[Crossref]

2001 (1)

M. Nizette, T. Erneux, A. Gavrielides, and V. Kovanis, “Stability and bifurcations of periodically modulated, optically injected laser diodes,” Phys. Rev. E 63, 026212 (2001).
[Crossref]

1999 (2)

V. Kovanis, T. Erneux, and A. Gavrielides, “Largely detuned injection-locked semiconductor lasers,” Opt. Commun. 159, 177–183 (1999).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[Crossref]

1998 (2)

B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
[Crossref]

R. P. Braun, G. Grosskopf, D. Pohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10, 728–730 (1998).
[Crossref]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

1996 (2)

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

1992 (1)

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

1989 (1)

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
[Crossref]

1984 (1)

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216 (1984).
[Crossref]

1982 (1)

L. Goldberg, H. F. Taylor, and J. F. Weller, “FM sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
[Crossref]

Aldaya, I.

I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of key-enabling components for remote millimetric wave generation in radio over fiber networks,” Opt. Laser Technol. 49, 213–226 (2013).
[Crossref]

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

Alsing, P. M.

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

Anandarajah, P.

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[Crossref]

Aragon-Zavala, A.

I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of key-enabling components for remote millimetric wave generation in radio over fiber networks,” Opt. Laser Technol. 49, 213–226 (2013).
[Crossref]

Barry, L. P.

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[Crossref]

Beas, J.

I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of key-enabling components for remote millimetric wave generation in radio over fiber networks,” Opt. Laser Technol. 49, 213–226 (2013).
[Crossref]

Bloom, D. M.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
[Crossref]

Braun, R. P.

R. P. Braun, G. Grosskopf, D. Pohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10, 728–730 (1998).
[Crossref]

Broberg, B.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Bruun, M.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Buet, X.

Campuzano, G.

I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of key-enabling components for remote millimetric wave generation in radio over fiber networks,” Opt. Laser Technol. 49, 213–226 (2013).
[Crossref]

Castanon, G.

I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of key-enabling components for remote millimetric wave generation in radio over fiber networks,” Opt. Laser Technol. 49, 213–226 (2013).
[Crossref]

Chan, S. C.

Chen, H. F.

Chen, J.

Chi, S.

Christensen, E. L.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Chu, C. H.

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
[Crossref] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

Cui, C.

Doft, F.

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[Crossref]

Donati, S.

K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22, 18648–18661 (2014).
[Crossref] [PubMed]

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Progress in Quantum Electron. 36, 293–341 (2012).
[Crossref]

Duan, G.H.

Enard, A.

Erneux, T.

M. Nizette, T. Erneux, A. Gavrielides, and V. Kovanis, “Stability and bifurcations of periodically modulated, optically injected laser diodes,” Phys. Rev. E 63, 026212 (2001).
[Crossref]

V. Kovanis, T. Erneux, and A. Gavrielides, “Largely detuned injection-locked semiconductor lasers,” Opt. Commun. 159, 177–183 (1999).
[Crossref]

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

Fu, X.

Gavrielides, A.

M. Nizette, T. Erneux, A. Gavrielides, and V. Kovanis, “Stability and bifurcations of periodically modulated, optically injected laser diodes,” Phys. Rev. E 63, 026212 (2001).
[Crossref]

V. Kovanis, T. Erneux, and A. Gavrielides, “Largely detuned injection-locked semiconductor lasers,” Opt. Commun. 159, 177–183 (1999).
[Crossref]

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

Gliese, U.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Goldberg, L.

L. Goldberg, H. F. Taylor, and J. F. Weller, “FM sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
[Crossref]

Grosskopf, G.

R. P. Braun, G. Grosskopf, D. Pohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10, 728–730 (1998).
[Crossref]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Hung, Y. H.

Hwang, S. K.

K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22, 18648–18661 (2014).
[Crossref] [PubMed]

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).
[Crossref] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Progress in Quantum Electron. 36, 293–341 (2012).
[Crossref]

S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34, 812–814 (2009).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
[Crossref] [PubMed]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[Crossref] [PubMed]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

Jiang, W. J.

Kaszubowska, A.

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[Crossref]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[Crossref]

M. Nizette, T. Erneux, A. Gavrielides, and V. Kovanis, “Stability and bifurcations of periodically modulated, optically injected laser diodes,” Phys. Rev. E 63, 026212 (2001).
[Crossref]

V. Kovanis, T. Erneux, and A. Gavrielides, “Largely detuned injection-locked semiconductor lasers,” Opt. Commun. 159, 177–183 (1999).
[Crossref]

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

Krauskopf, B.

B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
[Crossref]

Lelarge, F.

Lenstra, D.

B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
[Crossref]

Lester, L. F.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[Crossref]

Li, Y.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[Crossref]

Liang, D. H.

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[Crossref]

Lin, C. T.

Lin, C. Y.

Lin, F. Y.

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[Crossref]

Lin, S. L.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

Lindgren, S.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Liu, J. M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[Crossref] [PubMed]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Lo, K. H.

Maleki, L.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

Meslener, G. J.

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216 (1984).
[Crossref]

Murakowski, J. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon. 7, 118–122 (2013).
[Crossref]

Naderi, N. A.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[Crossref]

Nielsen, T. N.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Nizette, M.

M. Nizette, T. Erneux, A. Gavrielides, and V. Kovanis, “Stability and bifurcations of periodically modulated, optically injected laser diodes,” Phys. Rev. E 63, 026212 (2001).
[Crossref]

Peng, P. C.

Pochet, M.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[Crossref]

Pohde, D.

R. P. Braun, G. Grosskopf, D. Pohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10, 728–730 (1998).
[Crossref]

Prather, D. W.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon. 7, 118–122 (2013).
[Crossref]

Qi, X. Q.

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

Quirce, A.

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express. 20, 13390–13401 (2012).
[Crossref] [PubMed]

Rodwell, M. J. W.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
[Crossref]

Schmidt, F.

R. P. Braun, G. Grosskopf, D. Pohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10, 728–730 (1998).
[Crossref]

Schneider, G. J.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon. 7, 118–122 (2013).
[Crossref]

Schuetz, C. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon. 7, 118–122 (2013).
[Crossref]

Shi, S.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon. 7, 118–122 (2013).
[Crossref]

Shih, P. T.

Simpson, T. B.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Stubkjaer, K. E.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Taylor, H. F.

L. Goldberg, H. F. Taylor, and J. F. Weller, “FM sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
[Crossref]

Tollenaar, N.

B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
[Crossref]

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

Valle, A.

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express. 20, 13390–13401 (2012).
[Crossref] [PubMed]

van Dijk, F.

Weingarten, K. J.

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
[Crossref]

Weller, J. F.

L. Goldberg, H. F. Taylor, and J. F. Weller, “FM sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
[Crossref]

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

Yuan, Y. S.

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[Crossref]

Zhuang, J. P.

Appl. Phys. Lett. (1)

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[Crossref]

Electron. Lett. (1)

L. Goldberg, H. F. Taylor, and J. F. Weller, “FM sideband injection locking of diode lasers,” Electron. Lett. 18, 1019–1020 (1982).
[Crossref]

IEEE J. Quantum Electron. (5)

M. J. W. Rodwell, D. M. Bloom, and K. J. Weingarten, “Subpicosecond laser timing stabilization,” IEEE J. Quantum Electron. 25, 817–827 (1989).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[Crossref]

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216 (1984).
[Crossref]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[Crossref]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[Crossref]

IEEE Photon. J. (1)

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (5)

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[Crossref]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[Crossref]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[Crossref]

R. P. Braun, G. Grosskopf, D. Pohde, and F. Schmidt, “Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking,” IEEE Photon. Technol. Lett. 10, 728–730 (1998).
[Crossref]

J. Lightwave Technol. (1)

Nature Photon. (1)

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nature Photon. 7, 118–122 (2013).
[Crossref]

Opt. Commun. (2)

B. Krauskopf, N. Tollenaar, and D. Lenstra, “Tori and their bifurcations in an optically injected semiconductor laser,” Opt. Commun. 156, 158–169 (1998).
[Crossref]

V. Kovanis, T. Erneux, and A. Gavrielides, “Largely detuned injection-locked semiconductor lasers,” Opt. Commun. 159, 177–183 (1999).
[Crossref]

Opt. Express (3)

Opt. Express. (1)

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express. 20, 13390–13401 (2012).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

I. Aldaya, J. Beas, G. Castanon, G. Campuzano, and A. Aragon-Zavala, “A survey of key-enabling components for remote millimetric wave generation in radio over fiber networks,” Opt. Laser Technol. 49, 213–226 (2013).
[Crossref]

Opt. Lett. (6)

Phys. Rev. A (1)

T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, “Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection,” Phys. Rev. A 53, 4372–4380 (1996).
[Crossref] [PubMed]

Phys. Rev. E (1)

M. Nizette, T. Erneux, A. Gavrielides, and V. Kovanis, “Stability and bifurcations of periodically modulated, optically injected laser diodes,” Phys. Rev. E 63, 026212 (2001).
[Crossref]

Phys. Rev. Lett. (1)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112, 023901 (2014).
[Crossref] [PubMed]

Progress in Quantum Electron. (1)

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Progress in Quantum Electron. 36, 293–341 (2012).
[Crossref]

Quantum Semiclass. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the experimental apparatus. ML, master laser; SL, slave laser; PC, polarization controller; PM, phase modulator; MA, microwave amplifier; FA, fiber amplifier; ATT, attenuator; C, circulator; OSA, optical spectrum analyzer; MSA, microwave spectrum analyzer; PD, photodiode.

Fig. 2
Fig. 2

(a)(b) Spectra of the non-distorted microwave reference and the resulting comb-like optical signal, respectively. (c)(d) Spectra of the distorted microwave reference and the resulting comb-like optical signal, respectively. The inset of (a) shows a close-up of the spectrum, centering at 4 GHz, using the highest resolution bandwidth of 1 Hz. The spectrum of a continuous-wave optical signal (gray curve) is also shown in (d). The x-axes of the optical spectra are relative to the free-running frequency of the slave laser. The microwave reference frequency is fixed at fm = 4 GHz for each case.

Fig. 3
Fig. 3

(a) Optical and (b) microwave spectra of the P1 dynamics when the slave laser is subject to the continuous-wave optical injection shown in Fig. 2(d) at (ξi, fi) = (1.28, 31 GHz). The x-axis of the optical spectrum is relative to the free-running frequency of the slave laser. The microwave spectrum centers at 40 GHz with a resolution bandwidth of 1 MHz. The trace of the microwave frequency jitters (gray curve) is also shown in (b) for an observation period of 100 seconds.

Fig. 4
Fig. 4

(a) Optical and (b) microwave spectra of the P1 dynamics when the slave laser is subject to the comb-like optical injection shown in Fig. 2(d) at (ξi, fi) = (1.28, 31 GHz). The x-axis of the optical spectrum is relative to the free-running frequency of the slave laser. The microwave spectrum centers at 40 GHz with a resolution bandwidth of 1 Hz. The microwave reference frequency is fixed at fm = 4 GHz.

Fig. 5
Fig. 5

Single-sideband (SSB) phase noise as a function of microwave offset frequency for the generated 40-GHz microwave signal (black solid curve), the 4-GHz microwave reference (red solid curve), and the 4-GHz microwave reference scaled by N = 10 (red dotted curve).

Fig. 6
Fig. 6

(a) Microwave spectrum of the generated 20-GHz signal, centering at 20 GHz with a resolution bandwidth of 1 Hz, when fm = 4 GHz and N = 5. (b) Phase noise in terms of offset frequency for the generated 20-GHz signal in (a) (black solid curve), the 4-GHz reference (red solid curve), and the 4-GHz reference scaled by N = 5 (red dotted curve). (c) Phase noise variance in terms of N for generated microwave signals (blue symbols) and scaled microwave references (red symbols) when fm = 4 GHz. (d) Microwave power (black symbols) and SCR (white symbols) in terms of N when fm = 4 GHz. The corresponding values of f0 are also marked in the upper x-axes of (c) and (d).

Fig. 7
Fig. 7

(a) Microwave spectrum of the generated 20-GHz signal, centering at 20 GHz with a resolution bandwidth of 1 Hz, when fm = 2 GHz and N = 10. (b) Phase noise in terms of offset frequency for the generated 20-GHz signal in (a) (black solid curve), the 2-GHz reference (red solid curve), and the 2-GHz reference scaled by N = 10 (red dotted curve). (c) Phase noise variance in terms of fm for generated microwave signals (blue symbols) and scaled microwave references (red symbols) when N = 10. (d) Microwave power (black symbols) and SCR (white symbols) in terms of fm when N = 10. The corresponding values of f0 are also marked in the upper x-axes of (c) and (d).

Metrics