Abstract

A plasma confinement approach has been applied to enhance the signal intensity of laser-induced plasma in low pressure conditions down to 10−2 torr. Detection of plasma emission spectrum is a daunting task at low pressure due to the low electron density and the short persistence time of plasma that undergoes a rapid expansion. Here we devised a spatial confinement setup that increases the electron density at various range of low pressures. A confining window is placed above the sample surface to control the direction of the expanding plasma aimed at optimizing the efficiency of the low pressure detection. More ions, atoms, and molecules can reach the detector by a direction-controlled confinement of an otherwise freely expanding plasma. The spectral intensities of neutral atoms increased up to 4 times with a single laser pulse by the proposed confining method at 1 torr. The signal of doubly ionized carbon atom which was detectable only at low pressure is also enhanced 4 times. The results of this study provide an important guideline for strengthening the otherwise weak signals at low pressure by controlling the plasma expansion direction.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced plasma peculiarity at low pressures from the elemental lifetime perspective

Soo-Jin Choi and Jack J. Yoh
Opt. Express 19(23) 23097-23103 (2011)

Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas

Kyle C. Hartig, Sivanandan S. Harilal, Mark C. Phillips, Brian E. Brumfield, and Igor Jovanovic
Opt. Express 25(10) 11477-11490 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors (Basel) 10(5), 4907–4925 (2010).
    [Crossref] [PubMed]
  2. J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectro. Acta Part B. 87(5), 43–50 (2013).
    [Crossref]
  3. S. J. Choi and J. J. Yoh, “Laser-induced plasma peculiarity at low pressures from the elemental lifetime perspective,” Opt. Express 19(23), 23097–23103 (2011).
    [Crossref] [PubMed]
  4. S. Yalcin, Y. Y. Tsui, and R. Fedosejevs, “Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 19, 1295–1301 (2004).
    [Crossref]
  5. A. W. Miziolek, V. Palleschi, and I. Schechter, “Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications,” Cambridge University Press, (2006).
  6. C. B. Dreyer, G. S. Mungas, P. Thanh, and J. G. Radziszewski, “Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions,” Spectro. Acta Part B 62(12), 1448–1459 (2007).
    [Crossref]
  7. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
    [Crossref]
  8. L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
    [PubMed]
  9. L. B. Guo, B. Y. Zhang, X. N. He, C. M. Li, Y. S. Zhou, T. Wu, J. B. Park, X. Y. Zeng, and Y. F. Lu, “Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation,” Opt. Express 20(2), 1436–1443 (2012).
    [PubMed]
  10. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
    [Crossref]
  11. D. Ding, P. Liang, J. Wu, N. Xu, Z. Ying, and J. Sun, “A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements,” Spectro. Acta Part B. 79–80, 44–50 (2013).
    [Crossref]
  12. S. Tao and B. Wu, “Nanosecond laser pulse interactions with breakdown plasma in gas medium confined in a microhole,” Appl. Phys. B 113(2), 251–258 (2013).
    [Crossref]
  13. X. Zeng, X. Mao, S. S. Mao, S. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
    [Crossref]
  14. S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19(4), 495–498 (2004).
    [Crossref]
  15. Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy,” Opt. Express 22(11), 12909–12914 (2014).
    [Crossref] [PubMed]
  16. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
    [Crossref] [PubMed]
  17. Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
    [Crossref]
  18. C. Li, J. Wang, and X. Wang, “Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy,” Phys. Lett. A 378(45), 3319–3325 (2014).
    [Crossref]
  19. S. J. Choi, K. J. Lee, and J. J. Yoh, “The laser-induced plasma persistence time extension in low pressures using the ablated mass confinement method,” Spectro. Acta Part B. 97(1), 113–117 (2014).
    [Crossref]
  20. http://www.ptable.com/?lang=en
  21. V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectro. Acta Part B. 64(2), 141–146 (2009).
    [Crossref]
  22. F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1121–1131 (2005).
    [Crossref]
  23. G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1132–1139 (2005).
    [Crossref]
  24. T. A. Labutin, A. M. Popov, S. M. Zaytsev, N. B. Zorov, M. V. Belkov, V. V. Kiris, and S. N. Raikov, “Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 99(1), 94–100 (2014).
    [Crossref]

2014 (5)

Z. Hou, Z. Wang, J. Liu, W. Ni, and Z. Li, “Combination of cylindrical confinement and spark discharge for signal improvement using laser induced breakdown spectroscopy,” Opt. Express 22(11), 12909–12914 (2014).
[Crossref] [PubMed]

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

C. Li, J. Wang, and X. Wang, “Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy,” Phys. Lett. A 378(45), 3319–3325 (2014).
[Crossref]

S. J. Choi, K. J. Lee, and J. J. Yoh, “The laser-induced plasma persistence time extension in low pressures using the ablated mass confinement method,” Spectro. Acta Part B. 97(1), 113–117 (2014).
[Crossref]

T. A. Labutin, A. M. Popov, S. M. Zaytsev, N. B. Zorov, M. V. Belkov, V. V. Kiris, and S. N. Raikov, “Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 99(1), 94–100 (2014).
[Crossref]

2013 (4)

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
[PubMed]

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectro. Acta Part B. 87(5), 43–50 (2013).
[Crossref]

D. Ding, P. Liang, J. Wu, N. Xu, Z. Ying, and J. Sun, “A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements,” Spectro. Acta Part B. 79–80, 44–50 (2013).
[Crossref]

S. Tao and B. Wu, “Nanosecond laser pulse interactions with breakdown plasma in gas medium confined in a microhole,” Appl. Phys. B 113(2), 251–258 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (2)

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors (Basel) 10(5), 4907–4925 (2010).
[Crossref] [PubMed]

2009 (1)

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectro. Acta Part B. 64(2), 141–146 (2009).
[Crossref]

2007 (2)

C. B. Dreyer, G. S. Mungas, P. Thanh, and J. G. Radziszewski, “Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions,” Spectro. Acta Part B 62(12), 1448–1459 (2007).
[Crossref]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

2006 (1)

X. Zeng, X. Mao, S. S. Mao, S. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[Crossref]

2005 (3)

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1121–1131 (2005).
[Crossref]

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1132–1139 (2005).
[Crossref]

M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59(7), 853–860 (2005).
[Crossref] [PubMed]

2004 (2)

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19(4), 495–498 (2004).
[Crossref]

S. Yalcin, Y. Y. Tsui, and R. Fedosejevs, “Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 19, 1295–1301 (2004).
[Crossref]

Asimellis, G.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1132–1139 (2005).
[Crossref]

Belkov, M. V.

T. A. Labutin, A. M. Popov, S. M. Zaytsev, N. B. Zorov, M. V. Belkov, V. V. Kiris, and S. N. Raikov, “Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 99(1), 94–100 (2014).
[Crossref]

Burakov, V. S.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectro. Acta Part B. 64(2), 141–146 (2009).
[Crossref]

Choi, S. J.

S. J. Choi, K. J. Lee, and J. J. Yoh, “The laser-induced plasma persistence time extension in low pressures using the ablated mass confinement method,” Spectro. Acta Part B. 97(1), 113–117 (2014).
[Crossref]

S. J. Choi and J. J. Yoh, “Laser-induced plasma peculiarity at low pressures from the elemental lifetime perspective,” Opt. Express 19(23), 23097–23103 (2011).
[Crossref] [PubMed]

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

Corsi, M.

Cristoforetti, G.

Ding, D.

D. Ding, P. Liang, J. Wu, N. Xu, Z. Ying, and J. Sun, “A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements,” Spectro. Acta Part B. 79–80, 44–50 (2013).
[Crossref]

Diwakar, P. K.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectro. Acta Part B. 87(5), 43–50 (2013).
[Crossref]

Dreyer, C. B.

C. B. Dreyer, G. S. Mungas, P. Thanh, and J. G. Radziszewski, “Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions,” Spectro. Acta Part B 62(12), 1448–1459 (2007).
[Crossref]

Effenberger, A. J.

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors (Basel) 10(5), 4907–4925 (2010).
[Crossref] [PubMed]

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

Fedosejevs, R.

S. Yalcin, Y. Y. Tsui, and R. Fedosejevs, “Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 19, 1295–1301 (2004).
[Crossref]

Freeman, J. R.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectro. Acta Part B. 87(5), 43–50 (2013).
[Crossref]

Gao, M.

Giannoudakos, A.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1132–1139 (2005).
[Crossref]

Greif, R.

X. Zeng, X. Mao, S. S. Mao, S. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[Crossref]

Guo, L.

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Guo, L. B.

Hamilton, S.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1132–1139 (2005).
[Crossref]

Hao, Z.

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Hao, Z. Q.

Harilal, S. S.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectro. Acta Part B. 87(5), 43–50 (2013).
[Crossref]

Hassanein, A.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectro. Acta Part B. 87(5), 43–50 (2013).
[Crossref]

He, X. N.

Hidalgo, M.

Hou, Z.

Iriarte, D.

Isakov, S. N.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectro. Acta Part B. 64(2), 141–146 (2009).
[Crossref]

Kiris, V. V.

T. A. Labutin, A. M. Popov, S. M. Zaytsev, N. B. Zorov, M. V. Belkov, V. V. Kiris, and S. N. Raikov, “Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 99(1), 94–100 (2014).
[Crossref]

Kompitsas, M.

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1132–1139 (2005).
[Crossref]

Kononov, V. A.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectro. Acta Part B. 64(2), 141–146 (2009).
[Crossref]

Labutin, T. A.

T. A. Labutin, A. M. Popov, S. M. Zaytsev, N. B. Zorov, M. V. Belkov, V. V. Kiris, and S. N. Raikov, “Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 99(1), 94–100 (2014).
[Crossref]

Lee, K. J.

S. J. Choi, K. J. Lee, and J. J. Yoh, “The laser-induced plasma persistence time extension in low pressures using the ablated mass confinement method,” Spectro. Acta Part B. 97(1), 113–117 (2014).
[Crossref]

Legnaioli, S.

Li, C.

C. Li, J. Wang, and X. Wang, “Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy,” Phys. Lett. A 378(45), 3319–3325 (2014).
[Crossref]

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Li, C. M.

Li, X.

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Li, X. Y.

Li, Z.

Liang, P.

D. Ding, P. Liang, J. Wu, N. Xu, Z. Ying, and J. Sun, “A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements,” Spectro. Acta Part B. 79–80, 44–50 (2013).
[Crossref]

Ling, H.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

Liu, J.

Lu, Y.

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Lu, Y. F.

Mao, S. S.

X. Zeng, X. Mao, S. S. Mao, S. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[Crossref]

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19(4), 495–498 (2004).
[Crossref]

Mao, X.

X. Zeng, X. Mao, S. S. Mao, S. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[Crossref]

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19(4), 495–498 (2004).
[Crossref]

Mungas, G. S.

C. B. Dreyer, G. S. Mungas, P. Thanh, and J. G. Radziszewski, “Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions,” Spectro. Acta Part B 62(12), 1448–1459 (2007).
[Crossref]

Nedelko, M. I.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectro. Acta Part B. 64(2), 141–146 (2009).
[Crossref]

Ni, W.

Palleschi, V.

Park, J. B.

Popov, A. M.

T. A. Labutin, A. M. Popov, S. M. Zaytsev, N. B. Zorov, M. V. Belkov, V. V. Kiris, and S. N. Raikov, “Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 99(1), 94–100 (2014).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

Radziszewski, J. G.

C. B. Dreyer, G. S. Mungas, P. Thanh, and J. G. Radziszewski, “Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions,” Spectro. Acta Part B 62(12), 1448–1459 (2007).
[Crossref]

Raikov, S. N.

T. A. Labutin, A. M. Popov, S. M. Zaytsev, N. B. Zorov, M. V. Belkov, V. V. Kiris, and S. N. Raikov, “Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 99(1), 94–100 (2014).
[Crossref]

Russo, R. E.

X. Zeng, X. Mao, S. S. Mao, S. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[Crossref]

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19(4), 495–498 (2004).
[Crossref]

Ryahi, S.

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1121–1131 (2005).
[Crossref]

Salvetti, A.

Schaurich, D.

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1121–1131 (2005).
[Crossref]

Scott, J. R.

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors (Basel) 10(5), 4907–4925 (2010).
[Crossref] [PubMed]

Shen, M.

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

L. B. Guo, Z. Q. Hao, M. Shen, W. Xiong, X. N. He, Z. Q. Xie, M. Gao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Accuracy improvement of quantitative analysis by spatial confinement in laser-induced breakdown spectroscopy,” Opt. Express 21(15), 18188–18195 (2013).
[PubMed]

Shen, X. K.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

Sun, J.

D. Ding, P. Liang, J. Wu, N. Xu, Z. Ying, and J. Sun, “A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements,” Spectro. Acta Part B. 79–80, 44–50 (2013).
[Crossref]

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

Taffe, A.

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1121–1131 (2005).
[Crossref]

Tao, S.

S. Tao and B. Wu, “Nanosecond laser pulse interactions with breakdown plasma in gas medium confined in a microhole,” Appl. Phys. B 113(2), 251–258 (2013).
[Crossref]

Tarasenko, N. V.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectro. Acta Part B. 64(2), 141–146 (2009).
[Crossref]

Thanh, P.

C. B. Dreyer, G. S. Mungas, P. Thanh, and J. G. Radziszewski, “Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions,” Spectro. Acta Part B 62(12), 1448–1459 (2007).
[Crossref]

Tognoni, E.

Tsui, Y. Y.

S. Yalcin, Y. Y. Tsui, and R. Fedosejevs, “Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 19, 1295–1301 (2004).
[Crossref]

Vasilev, N. N.

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectro. Acta Part B. 64(2), 141–146 (2009).
[Crossref]

Verhoff, B.

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectro. Acta Part B. 87(5), 43–50 (2013).
[Crossref]

Wang, J.

C. Li, J. Wang, and X. Wang, “Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy,” Phys. Lett. A 378(45), 3319–3325 (2014).
[Crossref]

Wang, X.

C. Li, J. Wang, and X. Wang, “Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy,” Phys. Lett. A 378(45), 3319–3325 (2014).
[Crossref]

Wang, Z.

Wen, S.

X. Zeng, X. Mao, S. S. Mao, S. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[Crossref]

Weritz, F.

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1121–1131 (2005).
[Crossref]

Wilsch, G.

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1121–1131 (2005).
[Crossref]

Wu, B.

S. Tao and B. Wu, “Nanosecond laser pulse interactions with breakdown plasma in gas medium confined in a microhole,” Appl. Phys. B 113(2), 251–258 (2013).
[Crossref]

Wu, J.

D. Ding, P. Liang, J. Wu, N. Xu, Z. Ying, and J. Sun, “A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements,” Spectro. Acta Part B. 79–80, 44–50 (2013).
[Crossref]

Wu, T.

Xie, Z. Q.

Xiong, W.

Xu, N.

D. Ding, P. Liang, J. Wu, N. Xu, Z. Ying, and J. Sun, “A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements,” Spectro. Acta Part B. 79–80, 44–50 (2013).
[Crossref]

Yalcin, S.

S. Yalcin, Y. Y. Tsui, and R. Fedosejevs, “Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 19, 1295–1301 (2004).
[Crossref]

Ying, Z.

D. Ding, P. Liang, J. Wu, N. Xu, Z. Ying, and J. Sun, “A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements,” Spectro. Acta Part B. 79–80, 44–50 (2013).
[Crossref]

Yoh, J. J.

S. J. Choi, K. J. Lee, and J. J. Yoh, “The laser-induced plasma persistence time extension in low pressures using the ablated mass confinement method,” Spectro. Acta Part B. 97(1), 113–117 (2014).
[Crossref]

S. J. Choi and J. J. Yoh, “Laser-induced plasma peculiarity at low pressures from the elemental lifetime perspective,” Opt. Express 19(23), 23097–23103 (2011).
[Crossref] [PubMed]

Zaytsev, S. M.

T. A. Labutin, A. M. Popov, S. M. Zaytsev, N. B. Zorov, M. V. Belkov, V. V. Kiris, and S. N. Raikov, “Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 99(1), 94–100 (2014).
[Crossref]

Zeng, X.

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

X. Zeng, X. Mao, S. S. Mao, S. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[Crossref]

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19(4), 495–498 (2004).
[Crossref]

Zeng, X. Y.

Zhang, B. Y.

Zhou, Y. S.

Zorov, N. B.

T. A. Labutin, A. M. Popov, S. M. Zaytsev, N. B. Zorov, M. V. Belkov, V. V. Kiris, and S. N. Raikov, “Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 99(1), 94–100 (2014).
[Crossref]

Zou, X.

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

Appl. Phys. B (1)

S. Tao and B. Wu, “Nanosecond laser pulse interactions with breakdown plasma in gas medium confined in a microhole,” Appl. Phys. B 113(2), 251–258 (2013).
[Crossref]

Appl. Phys. Lett. (1)

X. Zeng, X. Mao, S. S. Mao, S. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88(6), 061502 (2006).
[Crossref]

Appl. Spectrosc. (1)

J. Anal. At. Spectrom. (4)

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19(4), 495–498 (2004).
[Crossref]

Z. Hao, L. Guo, C. Li, M. Shen, X. Zou, X. Li, Y. Lu, and X. Zeng, “Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement,” J. Anal. At. Spectrom. 29(12), 2309–2314 (2014).
[Crossref]

S. Yalcin, Y. Y. Tsui, and R. Fedosejevs, “Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 19, 1295–1301 (2004).
[Crossref]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010).
[Crossref]

J. Appl. Phys. (1)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spectroscopic study of laser-induced Al plasmas with cylindrical confinement,” J. Appl. Phys. 102(9), 093301 (2007).
[Crossref]

Opt. Express (4)

Phys. Lett. A (1)

C. Li, J. Wang, and X. Wang, “Shock wave confinement-induced plume temperature increase in laser-induced breakdown spectroscopy,” Phys. Lett. A 378(45), 3319–3325 (2014).
[Crossref]

Sensors (Basel) (1)

A. J. Effenberger and J. R. Scott, “Effect of atmospheric conditions on LIBS spectra,” Sensors (Basel) 10(5), 4907–4925 (2010).
[Crossref] [PubMed]

Spectro. Acta Part B (1)

C. B. Dreyer, G. S. Mungas, P. Thanh, and J. G. Radziszewski, “Study of sub-mJ-excited laser-induced plasma combined with Raman spectroscopy under Mars atmosphere-simulated conditions,” Spectro. Acta Part B 62(12), 1448–1459 (2007).
[Crossref]

Spectro. Acta Part B. (7)

S. J. Choi, K. J. Lee, and J. J. Yoh, “The laser-induced plasma persistence time extension in low pressures using the ablated mass confinement method,” Spectro. Acta Part B. 97(1), 113–117 (2014).
[Crossref]

J. R. Freeman, S. S. Harilal, P. K. Diwakar, B. Verhoff, and A. Hassanein, “Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions,” Spectro. Acta Part B. 87(5), 43–50 (2013).
[Crossref]

D. Ding, P. Liang, J. Wu, N. Xu, Z. Ying, and J. Sun, “A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements,” Spectro. Acta Part B. 79–80, 44–50 (2013).
[Crossref]

V. S. Burakov, N. V. Tarasenko, M. I. Nedelko, V. A. Kononov, N. N. Vasilev, and S. N. Isakov, “Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy,” Spectro. Acta Part B. 64(2), 141–146 (2009).
[Crossref]

F. Weritz, S. Ryahi, D. Schaurich, A. Taffe, and G. Wilsch, “Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1121–1131 (2005).
[Crossref]

G. Asimellis, S. Hamilton, A. Giannoudakos, and M. Kompitsas, “Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 60(7–8), 1132–1139 (2005).
[Crossref]

T. A. Labutin, A. M. Popov, S. M. Zaytsev, N. B. Zorov, M. V. Belkov, V. V. Kiris, and S. N. Raikov, “Determination of chlorine, sulfur and carbon in reinforced concrete structures by double-pulse laser-induced breakdown spectroscopy,” Spectro. Acta Part B. 99(1), 94–100 (2014).
[Crossref]

Other (2)

http://www.ptable.com/?lang=en

A. W. Miziolek, V. Palleschi, and I. Schechter, “Laser-induced breakdown spectroscopy (LIBS): fundamentals and applications,” Cambridge University Press, (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Direction of plasma expansion at low pressure (a) Free expanded plasma, (b) Confined plasma.
Fig. 2
Fig. 2 Effect of plasma confinement of the neutral atoms at 1 torr (a) Al I 396.152 nm, (b) Cu I 324.754 nm, (c) Zn I 472.2156 nm, (d) Ti I 334.9405 nm, (e) C I 247.8561 nm, (f) Ni I 341.4764 nm, (g) Sn I 326.2331 nm.
Fig. 3
Fig. 3 Effect of ablated mass confinement of the molecular bands at atmospheric pressure (a), (b) CN 388 nm, (c), (d) C2 516 nm.
Fig. 4
Fig. 4 Spectra of doubly ionized carbon atom.
Fig. 5
Fig. 5 Spectra of neutral sulfur atom.
Fig. 6
Fig. 6 Effect of confining window material (a) Zn 481 nm, (b) Cu 521 nm.

Tables (3)

Tables Icon

Table 1 Confined/unconfined signal ratio of neutral atoms using single laser pulse

Tables Icon

Table 2 Electron density of Al I (396 nm) at 2 µs delay time

Tables Icon

Table 3 Transmittance of window material at 1064 nm

Metrics