Abstract

We demonstrate material phase retrieval by linearly translating extended polycrystalline samples along the symmetry axis of an annular beam of high-energy X-rays. A series of pseudo-monochromatic diffraction images are recorded from the dark region encompassed by the beam. We measure Bragg maxima from different annular gauge volumes in the form of bright spots in the X-ray diffraction intensity. We present the experiment data from three materials with different crystallographic structural properties i.e. near ideal, large grain size and preferred orientation. This technique shows great promise for analytical inspection tasks requiring highly penetrating radiation such as security screening, medicine and non-destructive testing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Energy-dispersive X-ray diffraction using an annular beam

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos
Opt. Express 23(10) 13443-13454 (2015)

X-ray diffraction tomography employing an annular beam

Paul Evans, Keith Rogers, Anthony Dicken, Simon Godber, and Danae Prokopiou
Opt. Express 22(10) 11930-11944 (2014)

Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson
Opt. Express 25(18) 21321-21328 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
    [Crossref]
  2. G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
    [Crossref] [PubMed]
  3. B. Sun, M. Li, F. Zhang, Y. Zhong, N. Kang, W. Lu, and J. Liu, “The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique,” Microchem. J. 95(2), 293–297 (2010).
    [Crossref]
  4. C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: spectra analysis procedure optimization,” Nucl. Instrum. Meth. A 623(3), 1050–1060 (2010).
    [Crossref]
  5. G. Harding, “X-ray scatter tomography for explosives detection,” Radiat. Phys. Chem. 71(3–4), 869–881 (2004).
    [Crossref]
  6. K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
    [Crossref] [PubMed]
  7. I. D. Jupp, P. T. Durrant, D. Ramsden, T. Carter, G. Dermody, I. B. Pleasants, and D. Burrows, “The non-invasive inspection of baggage using coherent X-ray scattering,” in Proceedings of IEEE Conference on Transactions on Nuclear Science (IEEE, 2000), pp. 1987–1994.
    [Crossref]
  8. S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
    [Crossref] [PubMed]
  9. C. Liu, X. Hua, and W. Zhongchun, “The X-ray diffraction enhanced imaging of lung cancer tissue,” in Proceedings of IEEE 4th International Congress on Image and Signal Processing (IEEE, 2011), pp. 1593–1595.
    [Crossref]
  10. O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging - a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
    [Crossref] [PubMed]
  11. A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
    [Crossref] [PubMed]
  12. S. R. Beath and I. A. Cunningham, “Pseudomonoenergetic X-ray diffraction measurements using balanced filters for coherent-scatter computed tomography,” Med. Phys. 36(5), 1839–1847 (2009).
    [Crossref] [PubMed]
  13. D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).
  14. C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
    [Crossref]
  15. P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
    [PubMed]
  16. E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
    [Crossref] [PubMed]
  17. G. Harding and A. Harding, “X-ray diffraction imaging for explosives detection,” in Counterterrorist Detection Techniques of Explosives, J. Yinon, ed. (Elsevier, 2007), pp. 199–235.
  18. P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
    [Crossref]
  19. D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Meth. A 735(21), 341–348 (2014).
    [Crossref]
  20. D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
    [Crossref] [PubMed]
  21. P. Kirkpatrick, “On the theory and use of Ross filters,” Rev. Sci. Instrum. 10(6), 186–191 (1939).
    [Crossref]
  22. P. Kirkpatrick, “Theory and use of Ross filters II,” Rev. Sci. Instrum. 15(9), 223–229 (1944).
    [Crossref]

2014 (2)

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Meth. A 735(21), 341–348 (2014).
[Crossref]

2013 (2)

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

2012 (2)

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

2011 (2)

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
[Crossref]

2010 (5)

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

B. Sun, M. Li, F. Zhang, Y. Zhong, N. Kang, W. Lu, and J. Liu, “The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique,” Microchem. J. 95(2), 293–297 (2010).
[Crossref]

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: spectra analysis procedure optimization,” Nucl. Instrum. Meth. A 623(3), 1050–1060 (2010).
[Crossref]

2009 (2)

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging - a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

S. R. Beath and I. A. Cunningham, “Pseudomonoenergetic X-ray diffraction measurements using balanced filters for coherent-scatter computed tomography,” Med. Phys. 36(5), 1839–1847 (2009).
[Crossref] [PubMed]

2007 (1)

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

2004 (1)

G. Harding, “X-ray scatter tomography for explosives detection,” Radiat. Phys. Chem. 71(3–4), 869–881 (2004).
[Crossref]

1944 (1)

P. Kirkpatrick, “Theory and use of Ross filters II,” Rev. Sci. Instrum. 15(9), 223–229 (1944).
[Crossref]

1939 (1)

P. Kirkpatrick, “On the theory and use of Ross filters,” Rev. Sci. Instrum. 10(6), 186–191 (1939).
[Crossref]

Barnes, P.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging - a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Beath, S. R.

S. R. Beath and I. A. Cunningham, “Pseudomonoenergetic X-ray diffraction measurements using balanced filters for coherent-scatter computed tomography,” Med. Phys. 36(5), 1839–1847 (2009).
[Crossref] [PubMed]

Bradley, D. A.

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Burrows, D.

I. D. Jupp, P. T. Durrant, D. Ramsden, T. Carter, G. Dermody, I. B. Pleasants, and D. Burrows, “The non-invasive inspection of baggage using coherent X-ray scattering,” in Proceedings of IEEE Conference on Transactions on Nuclear Science (IEEE, 2000), pp. 1987–1994.
[Crossref]

Carter, T.

I. D. Jupp, P. T. Durrant, D. Ramsden, T. Carter, G. Dermody, I. B. Pleasants, and D. Burrows, “The non-invasive inspection of baggage using coherent X-ray scattering,” in Proceedings of IEEE Conference on Transactions on Nuclear Science (IEEE, 2000), pp. 1987–1994.
[Crossref]

Cernik, R. J.

C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
[Crossref]

Chan, J.

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Chan, J. W.

Christodoulou, C.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
[Crossref]

Cook, E.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

Cook, E. J.

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

Crespy, C.

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: spectra analysis procedure optimization,” Nucl. Instrum. Meth. A 623(3), 1050–1060 (2010).
[Crossref]

Cunningham, I. A.

S. R. Beath and I. A. Cunningham, “Pseudomonoenergetic X-ray diffraction measurements using balanced filters for coherent-scatter computed tomography,” Med. Phys. 36(5), 1839–1847 (2009).
[Crossref] [PubMed]

Dermody, G.

I. D. Jupp, P. T. Durrant, D. Ramsden, T. Carter, G. Dermody, I. B. Pleasants, and D. Burrows, “The non-invasive inspection of baggage using coherent X-ray scattering,” in Proceedings of IEEE Conference on Transactions on Nuclear Science (IEEE, 2000), pp. 1987–1994.
[Crossref]

Desai, H.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Dicken, A.

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Meth. A 735(21), 341–348 (2014).
[Crossref]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

Durrant, P. T.

I. D. Jupp, P. T. Durrant, D. Ramsden, T. Carter, G. Dermody, I. B. Pleasants, and D. Burrows, “The non-invasive inspection of baggage using coherent X-ray scattering,” in Proceedings of IEEE Conference on Transactions on Nuclear Science (IEEE, 2000), pp. 1987–1994.
[Crossref]

Duvauchelle, P.

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: spectra analysis procedure optimization,” Nucl. Instrum. Meth. A 623(3), 1050–1060 (2010).
[Crossref]

Evans, P.

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Meth. A 735(21), 341–348 (2014).
[Crossref]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

Fleckenstein, H.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Fong, R.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

Godber, S.

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Meth. A 735(21), 341–348 (2014).
[Crossref]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

Harding, G.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

G. Harding, “X-ray scatter tomography for explosives detection,” Radiat. Phys. Chem. 71(3–4), 869–881 (2004).
[Crossref]

Hills, D.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Horrocks, J.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

Horrocks, J. A.

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

Hua, X.

C. Liu, X. Hua, and W. Zhongchun, “The X-ray diffraction enhanced imaging of lung cancer tissue,” in Proceedings of IEEE 4th International Congress on Image and Signal Processing (IEEE, 2011), pp. 1593–1595.
[Crossref]

Jacques, S.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging - a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Jones, J. L.

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

Jupp, I. D.

I. D. Jupp, P. T. Durrant, D. Ramsden, T. Carter, G. Dermody, I. B. Pleasants, and D. Burrows, “The non-invasive inspection of baggage using coherent X-ray scattering,” in Proceedings of IEEE Conference on Transactions on Nuclear Science (IEEE, 2000), pp. 1987–1994.
[Crossref]

Kaftandjian, V.

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: spectra analysis procedure optimization,” Nucl. Instrum. Meth. A 623(3), 1050–1060 (2010).
[Crossref]

Kang, N.

B. Sun, M. Li, F. Zhang, Y. Zhong, N. Kang, W. Lu, and J. Liu, “The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique,” Microchem. J. 95(2), 293–297 (2010).
[Crossref]

Kirkpatrick, P.

P. Kirkpatrick, “Theory and use of Ross filters II,” Rev. Sci. Instrum. 15(9), 223–229 (1944).
[Crossref]

P. Kirkpatrick, “On the theory and use of Ross filters,” Rev. Sci. Instrum. 10(6), 186–191 (1939).
[Crossref]

Kosciesza, D.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Lazzari, O.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging - a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Li, M.

B. Sun, M. Li, F. Zhang, Y. Zhong, N. Kang, W. Lu, and J. Liu, “The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique,” Microchem. J. 95(2), 293–297 (2010).
[Crossref]

Liu, C.

C. Liu, X. Hua, and W. Zhongchun, “The X-ray diffraction enhanced imaging of lung cancer tissue,” in Proceedings of IEEE 4th International Congress on Image and Signal Processing (IEEE, 2011), pp. 1593–1595.
[Crossref]

Liu, J.

B. Sun, M. Li, F. Zhang, Y. Zhong, N. Kang, W. Lu, and J. Liu, “The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique,” Microchem. J. 95(2), 293–297 (2010).
[Crossref]

Lu, W.

B. Sun, M. Li, F. Zhang, Y. Zhong, N. Kang, W. Lu, and J. Liu, “The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique,” Microchem. J. 95(2), 293–297 (2010).
[Crossref]

O’Flynn, D.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
[Crossref]

Olesinski, S.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Pani, S.

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

Pleasants, I. B.

I. D. Jupp, P. T. Durrant, D. Ramsden, T. Carter, G. Dermody, I. B. Pleasants, and D. Burrows, “The non-invasive inspection of baggage using coherent X-ray scattering,” in Proceedings of IEEE Conference on Transactions on Nuclear Science (IEEE, 2000), pp. 1987–1994.
[Crossref]

Ponard, P.

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: spectra analysis procedure optimization,” Nucl. Instrum. Meth. A 623(3), 1050–1060 (2010).
[Crossref]

Prokopiou, D.

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Meth. A 735(21), 341–348 (2014).
[Crossref]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

Ramsden, D.

I. D. Jupp, P. T. Durrant, D. Ramsden, T. Carter, G. Dermody, I. B. Pleasants, and D. Burrows, “The non-invasive inspection of baggage using coherent X-ray scattering,” in Proceedings of IEEE Conference on Transactions on Nuclear Science (IEEE, 2000), pp. 1987–1994.
[Crossref]

Reid, C. B.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
[Crossref]

Rogers, J.

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

Rogers, K.

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Meth. A 735(21), 341–348 (2014).
[Crossref]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

A. Dicken, K. Rogers, P. Evans, J. W. Chan, J. Rogers, and S. Godber, “Combined X-ray diffraction and kinetic depth effect imaging,” Opt. Express 19(7), 6406–6413 (2011).
[Crossref] [PubMed]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

Seller, P.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
[Crossref]

Shackel, J.

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Meth. A 735(21), 341–348 (2014).
[Crossref]

Sochi, T.

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging - a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Soulez, F.

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: spectra analysis procedure optimization,” Nucl. Instrum. Meth. A 623(3), 1050–1060 (2010).
[Crossref]

Speller, R.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

Speller, R. D.

C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
[Crossref]

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

Strecker, H.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Sun, B.

B. Sun, M. Li, F. Zhang, Y. Zhong, N. Kang, W. Lu, and J. Liu, “The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique,” Microchem. J. 95(2), 293–297 (2010).
[Crossref]

Theedt, T.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Veale, M.

C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
[Crossref]

Veale, M. C.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Wells, K.

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Wilkinson, D.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

Wilson, M.

C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
[Crossref]

Wilson, M. D.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Wong, B.

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

Zhang, F.

B. Sun, M. Li, F. Zhang, Y. Zhong, N. Kang, W. Lu, and J. Liu, “The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique,” Microchem. J. 95(2), 293–297 (2010).
[Crossref]

Zhong, Y.

B. Sun, M. Li, F. Zhang, Y. Zhong, N. Kang, W. Lu, and J. Liu, “The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique,” Microchem. J. 95(2), 293–297 (2010).
[Crossref]

Zhongchun, W.

C. Liu, X. Hua, and W. Zhongchun, “The X-ray diffraction enhanced imaging of lung cancer tissue,” in Proceedings of IEEE 4th International Congress on Image and Signal Processing (IEEE, 2011), pp. 1593–1595.
[Crossref]

Zienert, G.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Analyst (Lond.) (1)

O. Lazzari, S. Jacques, T. Sochi, and P. Barnes, “Reconstructive colour X-ray diffraction imaging - a novel TEDDI imaging method,” Analyst (Lond.) 134(9), 1802–1807 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity X-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Appl. Radiat. Isot. (5)

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the multiple inverse fan beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

S. Pani, E. J. Cook, J. A. Horrocks, J. L. Jones, and R. D. Speller, “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68(10), 1980–1987 (2010).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

J. Appl. Cryst. (1)

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

J. Instrum. (2)

D. O’Flynn, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, H. Desai, B. Wong, and R. Speller, “Explosive detection using pixellated X-ray diffraction (PixD),” J. Instrum. 8(3), P03007 (2013).

C. Christodoulou, C. B. Reid, D. O’Flynn, M. Wilson, M. Veale, R. J. Cernik, P. Seller, and R. D. Speller, “Multivariate analysis of pixelated diffraction data,” J. Instrum. 6(12), C12027 (2011).
[Crossref]

Med. Phys. (1)

S. R. Beath and I. A. Cunningham, “Pseudomonoenergetic X-ray diffraction measurements using balanced filters for coherent-scatter computed tomography,” Med. Phys. 36(5), 1839–1847 (2009).
[Crossref] [PubMed]

Microchem. J. (1)

B. Sun, M. Li, F. Zhang, Y. Zhong, N. Kang, W. Lu, and J. Liu, “The performance of a fast testing system for illicit materials detection based on energy-dispersive X-ray diffraction technique,” Microchem. J. 95(2), 293–297 (2010).
[Crossref]

Nucl. Instrum. Meth. A (2)

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: spectra analysis procedure optimization,” Nucl. Instrum. Meth. A 623(3), 1050–1060 (2010).
[Crossref]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Meth. A 735(21), 341–348 (2014).
[Crossref]

Opt. Express (2)

Radiat. Phys. Chem. (1)

G. Harding, “X-ray scatter tomography for explosives detection,” Radiat. Phys. Chem. 71(3–4), 869–881 (2004).
[Crossref]

Rev. Sci. Instrum. (2)

P. Kirkpatrick, “On the theory and use of Ross filters,” Rev. Sci. Instrum. 10(6), 186–191 (1939).
[Crossref]

P. Kirkpatrick, “Theory and use of Ross filters II,” Rev. Sci. Instrum. 15(9), 223–229 (1944).
[Crossref]

Other (3)

C. Liu, X. Hua, and W. Zhongchun, “The X-ray diffraction enhanced imaging of lung cancer tissue,” in Proceedings of IEEE 4th International Congress on Image and Signal Processing (IEEE, 2011), pp. 1593–1595.
[Crossref]

I. D. Jupp, P. T. Durrant, D. Ramsden, T. Carter, G. Dermody, I. B. Pleasants, and D. Burrows, “The non-invasive inspection of baggage using coherent X-ray scattering,” in Proceedings of IEEE Conference on Transactions on Nuclear Science (IEEE, 2000), pp. 1987–1994.
[Crossref]

G. Harding and A. Harding, “X-ray diffraction imaging for explosives detection,” in Counterterrorist Detection Techniques of Explosives, J. Yinon, ed. (Elsevier, 2007), pp. 199–235.

Supplementary Material (3)

» Media 1: AVI (20523 KB)     
» Media 2: AVI (14516 KB)     
» Media 3: AVI (11355 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic depicting the full optical path of the FCG experiment arrangement. (a) The position of a Debye cone of half-opening angle 2θ originating at an annular gauge volume at position Z. (b) Example of a detector image of a high intensity circular caustic and focal spot produced by diffracted flux from a CaCO3 sample.
Fig. 2
Fig. 2 Experiment images collected by FCG from a CaCO3 sample showing the diffraction caustics before (a), at (b), and after (c), a focal spot. The corresponding Z-axis sample positions were 141 mm, 358.5 mm and 421.5 mm, respectively. The three images were taken from a video sequence of the caustics from the sample during its axial translation (Media 1). The focal spot (b) was obtained for inter-planar spacing d = 1.89 Å, 2θ = 6.44°.
Fig. 3
Fig. 3 Experiment images collected by FCG from a copper sample showing the diffraction caustics before (a), at (b), and after (c), a focal spot. The corresponding Z-axis positions were 141 mm, 301 mm and 575.5 mm, respectively. The three images were taken from a video sequence of the caustics from the sample during its axial translation (Media 2). The focal spot (b) was obtained for inter-planar spacing d = 2.09 Å, 2θ = 5.82 °.
Fig. 4
Fig. 4 Experiment images collected by FCG from a NaCl sample showing the diffraction caustics before (a), at (b), and after (c), a focal spot. The corresponding Z-axis positions were 257 mm, 329.5 mm and 409.5 mm, respectively. The three images were taken from a video sequence of the caustics from the sample during its axial translation (Media 3). The focal spot (b) was obtained for inter-planar spacing d = 1.99 Å, 2θ = 6.11 °.
Fig. 5
Fig. 5 Comparison of the 1D diffractogram obtained from high energy FCG for a CaCO3 sample with a reference pattern of the same material measured on a standard diffractometer.
Fig. 6
Fig. 6 Comparison of the 1D diffractogram obtained from high energy FCG for a copper sample with a reference pattern of the same material measured on a standard diffractometer.
Fig. 7
Fig. 7 Comparison of the 1D diffractogram obtained from high energy FCG for a NaCl sample with a reference pattern of the same material measured on a standard diffractometer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2θ=φ+ tan 1 ( ( R LZ )tanφ ).
d= λ 2sin[ 1 2 ( φ+ tan 1 ( ( R LZ )tanφ ) ) ] .
ΔZ= Z Max Z Min
Z Max =L( 1 tan φ Min tan(2 θ Max φ Min )+tan φ Min )+ t 2
Z Min =L( 1 tan φ Max tan(2 θ Min φ Max )+tan φ Max ) t 2 .

Metrics