Abstract

We have demonstrated Au-Ag bimetallic non-alloy nanoparticles (BNNPs) on thin a-Si film and c-Si substrate for high SERS enhancement, low cost, high sensitivity and reproducible SERS substrate with bi-SERS sensing properties where two different SERS peak for Au NPs and Ag NPs are observed on single SERS substrate. The isolated Au-Ag bimetallic NPs, with uniform size and spacing distribution, are suitable for uniform high density hotspot SERS enhancement. The SERS enhancement factor of Au-Ag BNNPs is 2.9 times higher compared to Ag NPs on similar substrates due to the increase of the localized surface plasmon resonance effect. However there is a decrement of SERS peak intensity at specific wavenumbers when the surrounding refractive index increases due to out-phase hybridization of Au NPs. The distinct changes of the two different SERS peaks on single Au-Ag BNNPs SERS substrate due to Au and Ag NPs independently show possible application for bi-molecular sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure

Jihua Xu, Chonghui Li, Haipeng Si, Xiaofei Zhao, Lin Wang, Shouzhen Jiang, Dongmei Wei, Jing Yu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21546-21557 (2018)

Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency

R. Kuladeep, L. Jyothi, K. Shadak Alee, K. L. N. Deepak, and D. Narayana Rao
Opt. Mater. Express 2(2) 161-172 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [PubMed]
  2. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  3. B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L. Marzán, “Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
    [Crossref]
  4. T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size-dependent spontaneous alloying of Au-Ag nanoparticles,” J. Am. Chem. Soc. 124(40), 11989–11996 (2002).
    [Crossref] [PubMed]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  6. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
    [Crossref]
  7. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref] [PubMed]
  8. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
    [Crossref] [PubMed]
  9. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [Crossref] [PubMed]
  10. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
    [Crossref]
  11. S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, and H. C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,” Biosens. Bioelectron. 61, 232–240 (2014).
    [Crossref] [PubMed]
  12. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  13. Z. Y. Jiang, X. X. Jiang, S. Su, X. P. Wei, S. T. Lee, and Y. He, “Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection,” Appl. Phys. Lett. 100(20), 203104 (2012).
    [Crossref]
  14. J. Tang, F. S. Ou, H. P. Kuo, M. Hu, W. F. Stickle, Z. Li, and R. S. Williams, “Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates,” Appl. Phys., A Mater. Sci. Process. 96(4), 793–797 (2009).
    [Crossref]
  15. J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. 17(17), 2131–2138 (2005).
    [Crossref]
  16. Y. He, C. H. Fan, and S. T. Lee, “Silicon nanostructures for bioapplications,” Nano Today 5(4), 282–295 (2010).
    [Crossref]
  17. R. Jenison, H. La, A. Haeberli, R. Ostroff, and B. Polisky, “Silicon-based biosensors for rapid detection of protein or nucleic acid targets,” Clin. Chem. 47(10), 1894–1900 (2001).
    [PubMed]
  18. C. M. Müller, F. C. F. Mornaghini, and R. Spolenak, “Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography,” Nanotechnology 19(48), 485306 (2008).
    [Crossref] [PubMed]
  19. C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
    [Crossref] [PubMed]
  20. K. Baba, T. Okuno, and M. Miyagi, “Resonance wavelengths of silver-gold compound metal island films,” J. Opt. Soc. Am. B 12(12), 2372–2376 (1995).
    [Crossref]
  21. M. D. Abràmoff, P. J. Magelhaes, and S. J. Ram, “Image processing with Image,” Biophotonics Int 11, 36–42 (2004).
    [PubMed]
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  23. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
    [PubMed]
  24. F. Y. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
    [Crossref]
  25. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003).
    [Crossref]
  26. A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
    [Crossref] [PubMed]
  27. S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994).
    [Crossref]

2014 (2)

S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, and H. C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,” Biosens. Bioelectron. 61, 232–240 (2014).
[Crossref] [PubMed]

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

2012 (1)

Z. Y. Jiang, X. X. Jiang, S. Su, X. P. Wei, S. T. Lee, and Y. He, “Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection,” Appl. Phys. Lett. 100(20), 203104 (2012).
[Crossref]

2011 (1)

F. Y. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
[Crossref]

2010 (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Y. He, C. H. Fan, and S. T. Lee, “Silicon nanostructures for bioapplications,” Nano Today 5(4), 282–295 (2010).
[Crossref]

2009 (3)

2008 (3)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

C. M. Müller, F. C. F. Mornaghini, and R. Spolenak, “Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography,” Nanotechnology 19(48), 485306 (2008).
[Crossref] [PubMed]

2006 (1)

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[Crossref] [PubMed]

2005 (3)

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L. Marzán, “Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. 17(17), 2131–2138 (2005).
[Crossref]

2004 (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

M. D. Abràmoff, P. J. Magelhaes, and S. J. Ram, “Image processing with Image,” Biophotonics Int 11, 36–42 (2004).
[PubMed]

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003).
[Crossref]

2002 (2)

T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size-dependent spontaneous alloying of Au-Ag nanoparticles,” J. Am. Chem. Soc. 124(40), 11989–11996 (2002).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

2001 (1)

R. Jenison, H. La, A. Haeberli, R. Ostroff, and B. Polisky, “Silicon-based biosensors for rapid detection of protein or nucleic acid targets,” Clin. Chem. 47(10), 1894–1900 (2001).
[PubMed]

1998 (1)

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[Crossref]

1995 (1)

1994 (1)

S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994).
[Crossref]

Abràmoff, M. D.

M. D. Abràmoff, P. J. Magelhaes, and S. J. Ram, “Image processing with Image,” Biophotonics Int 11, 36–42 (2004).
[PubMed]

Ahn, C. W.

Alameh, K.

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

Alemu, N.

F. Y. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Baba, K.

Boriskina, S. V.

Bunker, B. A.

T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size-dependent spontaneous alloying of Au-Ag nanoparticles,” J. Am. Chem. Soc. 124(40), 11989–11996 (2002).
[Crossref] [PubMed]

Burrows, A.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L. Marzán, “Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[Crossref]

Catchpole, K. R.

Chen, F. Y.

F. Y. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
[Crossref]

Choi, K. C.

Dal Negro, L.

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Fan, C. H.

Y. He, C. H. Fan, and S. T. Lee, “Silicon nanostructures for bioapplications,” Nano Today 5(4), 282–295 (2010).
[Crossref]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Gezelter, J. D.

T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size-dependent spontaneous alloying of Au-Ag nanoparticles,” J. Am. Chem. Soc. 124(40), 11989–11996 (2002).
[Crossref] [PubMed]

Gopinath, A.

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Haeberli, A.

R. Jenison, H. La, A. Haeberli, R. Ostroff, and B. Polisky, “Silicon-based biosensors for rapid detection of protein or nucleic acid targets,” Clin. Chem. 47(10), 1894–1900 (2001).
[PubMed]

Haes, A. J.

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[Crossref] [PubMed]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

He, Y.

Z. Y. Jiang, X. X. Jiang, S. Su, X. P. Wei, S. T. Lee, and Y. He, “Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection,” Appl. Phys. Lett. 100(20), 203104 (2012).
[Crossref]

Y. He, C. H. Fan, and S. T. Lee, “Silicon nanostructures for bioapplications,” Nano Today 5(4), 282–295 (2010).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Hu, M.

J. Tang, F. S. Ou, H. P. Kuo, M. Hu, W. F. Stickle, Z. Li, and R. S. Williams, “Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates,” Appl. Phys., A Mater. Sci. Process. 96(4), 793–797 (2009).
[Crossref]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Jang, S. J.

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

Jenison, R.

R. Jenison, H. La, A. Haeberli, R. Ostroff, and B. Polisky, “Silicon-based biosensors for rapid detection of protein or nucleic acid targets,” Clin. Chem. 47(10), 1894–1900 (2001).
[PubMed]

Jiang, X. X.

Z. Y. Jiang, X. X. Jiang, S. Su, X. P. Wei, S. T. Lee, and Y. He, “Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection,” Appl. Phys. Lett. 100(20), 203104 (2012).
[Crossref]

Jiang, Z. Y.

Z. Y. Jiang, X. X. Jiang, S. Su, X. P. Wei, S. T. Lee, and Y. He, “Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection,” Appl. Phys. Lett. 100(20), 203104 (2012).
[Crossref]

Johnston, R. L.

F. Y. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
[Crossref]

Kiely, C. J.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L. Marzán, “Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[Crossref]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Kreiter, M.

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. 17(17), 2131–2138 (2005).
[Crossref]

Kuo, H. P.

J. Tang, F. S. Ou, H. P. Kuo, M. Hu, W. F. Stickle, Z. Li, and R. S. Williams, “Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates,” Appl. Phys., A Mater. Sci. Process. 96(4), 793–797 (2009).
[Crossref]

La, H.

R. Jenison, H. La, A. Haeberli, R. Ostroff, and B. Polisky, “Silicon-based biosensors for rapid detection of protein or nucleic acid targets,” Clin. Chem. 47(10), 1894–1900 (2001).
[PubMed]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Lee, S. T.

Z. Y. Jiang, X. X. Jiang, S. Su, X. P. Wei, S. T. Lee, and Y. He, “Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection,” Appl. Phys. Lett. 100(20), 203104 (2012).
[Crossref]

Y. He, C. H. Fan, and S. T. Lee, “Silicon nanostructures for bioapplications,” Nano Today 5(4), 282–295 (2010).
[Crossref]

Lee, Y. T.

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

Li, Z.

J. Tang, F. S. Ou, H. P. Kuo, M. Hu, W. F. Stickle, Z. Li, and R. S. Williams, “Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates,” Appl. Phys., A Mater. Sci. Process. 96(4), 793–797 (2009).
[Crossref]

Liao, J. D.

S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, and H. C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,” Biosens. Bioelectron. 61, 232–240 (2014).
[Crossref] [PubMed]

Luo, S. C.

S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, and H. C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,” Biosens. Bioelectron. 61, 232–240 (2014).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Magelhaes, P. J.

M. D. Abràmoff, P. J. Magelhaes, and S. J. Ram, “Image processing with Image,” Biophotonics Int 11, 36–42 (2004).
[PubMed]

Marzán, L. M. L.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L. Marzán, “Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[Crossref]

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003).
[Crossref]

Meisel, D.

T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size-dependent spontaneous alloying of Au-Ag nanoparticles,” J. Am. Chem. Soc. 124(40), 11989–11996 (2002).
[Crossref] [PubMed]

Miyagi, M.

Mornaghini, F. C. F.

C. M. Müller, F. C. F. Mornaghini, and R. Spolenak, “Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography,” Nanotechnology 19(48), 485306 (2008).
[Crossref] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Müller, C. M.

C. M. Müller, F. C. F. Mornaghini, and R. Spolenak, “Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography,” Nanotechnology 19(48), 485306 (2008).
[Crossref] [PubMed]

Mulvaney, P.

S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Okuno, T.

Ostroff, R.

R. Jenison, H. La, A. Haeberli, R. Ostroff, and B. Polisky, “Silicon-based biosensors for rapid detection of protein or nucleic acid targets,” Clin. Chem. 47(10), 1894–1900 (2001).
[PubMed]

Ou, F. S.

J. Tang, F. S. Ou, H. P. Kuo, M. Hu, W. F. Stickle, Z. Li, and R. S. Williams, “Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates,” Appl. Phys., A Mater. Sci. Process. 96(4), 793–797 (2009).
[Crossref]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Peng, H. C.

S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, and H. C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,” Biosens. Bioelectron. 61, 232–240 (2014).
[Crossref] [PubMed]

Polisky, B.

R. Jenison, H. La, A. Haeberli, R. Ostroff, and B. Polisky, “Silicon-based biosensors for rapid detection of protein or nucleic acid targets,” Clin. Chem. 47(10), 1894–1900 (2001).
[PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Ram, S. J.

M. D. Abràmoff, P. J. Magelhaes, and S. J. Ram, “Image processing with Image,” Biophotonics Int 11, 36–42 (2004).
[PubMed]

Reinhard, B. M.

Rochholz, H.

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. 17(17), 2131–2138 (2005).
[Crossref]

Rodríguez-González, B.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L. Marzán, “Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[Crossref]

Schatz, G. C.

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[Crossref] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shibata, T.

T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size-dependent spontaneous alloying of Au-Ag nanoparticles,” J. Am. Chem. Soc. 124(40), 11989–11996 (2002).
[Crossref] [PubMed]

Shumaker-Parry, J. S.

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. 17(17), 2131–2138 (2005).
[Crossref]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Sivashanmugan, K.

S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, and H. C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,” Biosens. Bioelectron. 61, 232–240 (2014).
[Crossref] [PubMed]

Song, Y. M.

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

Spolenak, R.

C. M. Müller, F. C. F. Mornaghini, and R. Spolenak, “Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography,” Nanotechnology 19(48), 485306 (2008).
[Crossref] [PubMed]

Stickle, W. F.

J. Tang, F. S. Ou, H. P. Kuo, M. Hu, W. F. Stickle, Z. Li, and R. S. Williams, “Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates,” Appl. Phys., A Mater. Sci. Process. 96(4), 793–797 (2009).
[Crossref]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[Crossref]

Su, S.

Z. Y. Jiang, X. X. Jiang, S. Su, X. P. Wei, S. T. Lee, and Y. He, “Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection,” Appl. Phys. Lett. 100(20), 203104 (2012).
[Crossref]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Tan, C. L.

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

Tang, J.

J. Tang, F. S. Ou, H. P. Kuo, M. Hu, W. F. Stickle, Z. Li, and R. S. Williams, “Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates,” Appl. Phys., A Mater. Sci. Process. 96(4), 793–797 (2009).
[Crossref]

Underwood, S.

S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[Crossref] [PubMed]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003).
[Crossref]

Vardeman, C. F.

T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size-dependent spontaneous alloying of Au-Ag nanoparticles,” J. Am. Chem. Soc. 124(40), 11989–11996 (2002).
[Crossref] [PubMed]

Watanabe, M.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L. Marzán, “Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[Crossref]

Wei, X. P.

Z. Y. Jiang, X. X. Jiang, S. Su, X. P. Wei, S. T. Lee, and Y. He, “Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection,” Appl. Phys. Lett. 100(20), 203104 (2012).
[Crossref]

Williams, R. S.

J. Tang, F. S. Ou, H. P. Kuo, M. Hu, W. F. Stickle, Z. Li, and R. S. Williams, “Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates,” Appl. Phys., A Mater. Sci. Process. 96(4), 793–797 (2009).
[Crossref]

Yang, K. Y.

Yao, C. K.

S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, and H. C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,” Biosens. Bioelectron. 61, 232–240 (2014).
[Crossref] [PubMed]

Zhang, Z.

T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size-dependent spontaneous alloying of Au-Ag nanoparticles,” J. Am. Chem. Soc. 124(40), 11989–11996 (2002).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[Crossref] [PubMed]

Zou, S.

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[Crossref] [PubMed]

Adv. Mater. (1)

J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, “Fabrication of crescent-shaped optical antennas,” Adv. Mater. 17(17), 2131–2138 (2005).
[Crossref]

AIP Adv. (1)

F. Y. Chen, N. Alemu, and R. L. Johnston, “Collective plasmon modes in a compositionally asymmetric nanoparticle dimer,” AIP Adv. 1(3), 032134 (2011).
[Crossref]

Appl. Phys. Lett. (2)

Z. Y. Jiang, X. X. Jiang, S. Su, X. P. Wei, S. T. Lee, and Y. He, “Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection,” Appl. Phys. Lett. 100(20), 203104 (2012).
[Crossref]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Tang, F. S. Ou, H. P. Kuo, M. Hu, W. F. Stickle, Z. Li, and R. S. Williams, “Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates,” Appl. Phys., A Mater. Sci. Process. 96(4), 793–797 (2009).
[Crossref]

Biophotonics Int (1)

M. D. Abràmoff, P. J. Magelhaes, and S. J. Ram, “Image processing with Image,” Biophotonics Int 11, 36–42 (2004).
[PubMed]

Biosens. Bioelectron. (1)

S. C. Luo, K. Sivashanmugan, J. D. Liao, C. K. Yao, and H. C. Peng, “Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review,” Biosens. Bioelectron. 61, 232–240 (2014).
[Crossref] [PubMed]

Clin. Chem. (1)

R. Jenison, H. La, A. Haeberli, R. Ostroff, and B. Polisky, “Silicon-based biosensors for rapid detection of protein or nucleic acid targets,” Clin. Chem. 47(10), 1894–1900 (2001).
[PubMed]

J. Am. Chem. Soc. (2)

T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size-dependent spontaneous alloying of Au-Ag nanoparticles,” J. Am. Chem. Soc. 124(40), 11989–11996 (2002).
[Crossref] [PubMed]

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[Crossref] [PubMed]

J. Mater. Chem. (1)

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L. Marzán, “Multishell bimetallic AuAg nanoparticles: Synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[Crossref]

Langmuir (1)

S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994).
[Crossref]

Nano Lett. (2)

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3(8), 1057–1062 (2003).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Nano Today (1)

Y. He, C. H. Fan, and S. T. Lee, “Silicon nanostructures for bioapplications,” Nano Today 5(4), 282–295 (2010).
[Crossref]

Nanoscale Res. Lett. (1)

C. L. Tan, S. J. Jang, Y. M. Song, K. Alameh, and Y. T. Lee, “Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates,” Nanoscale Res. Lett. 9(1), 181 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

C. M. Müller, F. C. F. Mornaghini, and R. Spolenak, “Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography,” Nanotechnology 19(48), 485306 (2008).
[Crossref] [PubMed]

Nat. Mater. (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Other (1)

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SEM images of the BNNPs and NPs on c-Si and thin a-Si (a,d) Au MNPs on c-Si substrate and thin a-Si film, respectively (10 nm thick Au film annealed at 600 °C for 1 min). (b,e) Ag MNPs on a c-Si and a thin Si film, respectively (10 nm thick Ag film annealed at 500 °C for 1 min). (c,f) Au-Ag BNNPs on c-Si substrate and thin a-Si film, respectively (10 nm thick Au film annealed at 600 °C for 1 min, followed by deposition of 10 nm thick Ag film and annealing at 500 °C for 1min.
Fig. 2
Fig. 2 Raman spectrum of Au NPs (A2), Ag NPs (A3), and Au-Ag BNNPs (A4) on c-Si substrate and c-Si substrate (A1) in air. Three SERS peaks at 517 cm−1, 1342 cm−1, and 1601 cm−1 were observed.
Fig. 3
Fig. 3 Raman spectrum (a) A1 embedded in SiO2, SiNx, and air (reference), (b) A2 and A3 embedded in SiO2, SiNx, and air, (c) A4 embedded in SiO2, SiNx, and air. The highest SERS peaks at 1342 cm−1 and 1601 cm−1 are achieved by A4. However, the intensity of the SERS peak around 517 cm−1 is reduced as the refractive index increases.
Fig. 4
Fig. 4 Enhancement Factor calculation of A2, A3 and A4 embedded in SiO2, SiNx and air. The intensity of the SERS peaks around 517 cm−1, 1342 cm−1, and 1601 cm−1 changes depending on the metal type (Ag or Au), as well as the refractive index of the surrounding medium. The bracket in the legend indicates the SERS peak at the Raman Shift.
Fig. 5
Fig. 5 Raman spectrum of Au NPs (B2), Ag NPs (B3), and Au-Ag BNNPs (B4) on thin a-Si substrate and thin a-Si substrate (B1) in air. Three SERS peaks at 517 cm−1, 1342 cm−1, and 1601 cm−1 were observed. The SERS peak of 473 cm−1 of the thin a-Si substrate can also be seen to have shifted to 517 cm−1.
Fig. 6
Fig. 6 Raman spectrum (a) B1 embedded in SiO2, SiNx, and air (reference), (b) B2 and B3 embedded in SiO2, SiNx, and air, (c) B4 embedded in SiO2, SiNx, and air. The highest SERS peaks were found at 1342 cm−1 and 1601 cm−1 for B4 and the intensity was slightly lower compared to that obtained using A4.
Fig. 7
Fig. 7 Enhancement factor calculation of B2, B3 and B4 embedded in SiO2, SiNx and air . The highest intensity values of the SERS peaks of B4 embedded in SiNx at 1342 cm−1 and 1601 cm−1 are 244.4 and 263.3-folds greater than those obtained using B2 or B3. These values are slightly lower, by 18.05% and 19.07%, than those obtained using A4 embedded in SiNx. The bracket in the legend indicates the SERS peaks at the Raman Shift.

Tables (1)

Tables Icon

Table 1 Summary of NP size distributions, spacing between particles, and surface densities of Au NPs, Ag NPs, and Au-Ag BNNPs on both c-Si and thin a-Si substrates.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF= I SERS I Raman N Raman N SERS ,

Metrics