Abstract

In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double-random-phase encryption with photon counting for image authentication using only the amplitude of the encrypted image

Yong Wang, Adam Markman, Chenggen Quan, and Bahram Javidi
J. Opt. Soc. Am. A 33(11) 2158-2165 (2016)

Efficient asymmetric image authentication schemes based on photon counting-double random phase encoding and RSA algorithms

Inkyu Moon, Faliu Yi, Mingu Han, and Jieun Lee
Appl. Opt. 55(16) 4328-4335 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, ed., Optical and Digital Techniques for Information Security (Springer, 2005).
  2. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1(3), 589–636 (2009).
    [Crossref]
  3. W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photon. 6(2), 120–155 (2014).
    [Crossref]
  4. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
    [Crossref] [PubMed]
  5. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24(11), 762–764 (1999).
    [Crossref] [PubMed]
  6. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000).
    [Crossref] [PubMed]
  7. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29(14), 1584–1586 (2004).
    [Crossref] [PubMed]
  8. A. Alfalou and C. Brosseau, “Robust and discriminating method for face recognition based on correlation technique and independent component analysis model,” Opt. Lett. 36(5), 645–647 (2011).
    [Crossref] [PubMed]
  9. X. Wang and D. Zhao, “Amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a random amplitude mask,” Opt. Lett. 38(18), 3684–3686 (2013).
    [Crossref] [PubMed]
  10. E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36(1), 22–24 (2011).
    [Crossref] [PubMed]
  11. E. A. Watson and G. M. Morris, “Imaging thermal objects with photon-counting detectors,” Appl. Opt. 31(23), 4751–4757 (1992).
    [Crossref] [PubMed]
  12. S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13(23), 9310–9330 (2005).
    [Crossref] [PubMed]
  13. E. Pérez-Cabré, H. C. Abril, M. S. Millán, and B. Javidi, “Photon-counting double-random-phase encoding for secure image verification and retrieval,” J. Opt. 14(9), 094001 (2012).
    [Crossref]
  14. A. Markman, B. Javidi, and M. Tehranipoor, “Photon-counting security tagging and verification using optically encoded QR codes,” IEEE Photon. J. 6(1), 6800609 (2014).
    [Crossref]
  15. A. Markman and B. Javidi, “Full-phase photon-counting double-random-phase encryption,” J. Opt. Soc. Am. A 31(2), 394–403 (2014).
    [PubMed]
  16. Q. Gong, X. Liu, G. Li, and Y. Qin, “Multiple-image encryption and authentication with sparse representation by space multiplexing,” Appl. Opt. 52(31), 7486–7493 (2013).
    [Crossref] [PubMed]
  17. W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16(2), 025402 (2014).
    [Crossref]
  18. W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
    [Crossref]
  19. Y. Shi, T. Li, Y. Wang, Q. Gao, S. Zhang, and H. Li, “Optical image encryption via ptychography,” Opt. Lett. 38(9), 1425–1427 (2013).
    [Crossref] [PubMed]
  20. X. Wang, W. Chen, and X. Chen, “Optical binary image encryption using aperture-key and dual wavelengths,” Opt. Express 22(23), 28077–28085 (2014).
    [Crossref] [PubMed]
  21. W. Chen, G. Situ, and X. Chen, “High-flexibility optical encryption via aperture movement,” Opt. Express 21(21), 24680–24691 (2013).
    [Crossref] [PubMed]
  22. Y. Qin, Q. Gong, and Z. Wang, “Simplified optical image encryption approach using single diffraction pattern in diffractive-imaging-based scheme,” Opt. Express 22(18), 21790–21799 (2014).
    [Crossref] [PubMed]
  23. J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, 1990).
  24. J. F. Barrera, A. Mira, and R. Torroba, “Optical encryption and QR codes: Secure and noise-free information retrieval,” Opt. Express 21(5), 5373–5378 (2013).
    [Crossref] [PubMed]
  25. J. F. Barrera, A. Vélez, and R. Torroba, “Experimental scrambling and noise reduction applied to the optical encryption of QR codes,” Opt. Express 22(17), 20268–20277 (2014).
    [Crossref] [PubMed]
  26. C. Lin, X. Shen, and B. Li, “Four-dimensional key design in amplitude, phase, polarization and distance for optical encryption based on polarization digital holography and QR code,” Opt. Express 22(17), 20727–20739 (2014).
    [Crossref] [PubMed]
  27. A. Markman, J. Wang, and B. Javidi, “Three-dimensional integral imaging displays using a quick-response encoded elemental image array,” Optica 1(5), 332–335 (2014).
    [Crossref]
  28. F. Sadjadi and B. Javidi, Physics of Automatic Target Recognition (Springer, 2007).

2014 (9)

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photon. 6(2), 120–155 (2014).
[Crossref]

A. Markman, B. Javidi, and M. Tehranipoor, “Photon-counting security tagging and verification using optically encoded QR codes,” IEEE Photon. J. 6(1), 6800609 (2014).
[Crossref]

A. Markman and B. Javidi, “Full-phase photon-counting double-random-phase encryption,” J. Opt. Soc. Am. A 31(2), 394–403 (2014).
[PubMed]

W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16(2), 025402 (2014).
[Crossref]

X. Wang, W. Chen, and X. Chen, “Optical binary image encryption using aperture-key and dual wavelengths,” Opt. Express 22(23), 28077–28085 (2014).
[Crossref] [PubMed]

Y. Qin, Q. Gong, and Z. Wang, “Simplified optical image encryption approach using single diffraction pattern in diffractive-imaging-based scheme,” Opt. Express 22(18), 21790–21799 (2014).
[Crossref] [PubMed]

J. F. Barrera, A. Vélez, and R. Torroba, “Experimental scrambling and noise reduction applied to the optical encryption of QR codes,” Opt. Express 22(17), 20268–20277 (2014).
[Crossref] [PubMed]

C. Lin, X. Shen, and B. Li, “Four-dimensional key design in amplitude, phase, polarization and distance for optical encryption based on polarization digital holography and QR code,” Opt. Express 22(17), 20727–20739 (2014).
[Crossref] [PubMed]

A. Markman, J. Wang, and B. Javidi, “Three-dimensional integral imaging displays using a quick-response encoded elemental image array,” Optica 1(5), 332–335 (2014).
[Crossref]

2013 (6)

2012 (1)

E. Pérez-Cabré, H. C. Abril, M. S. Millán, and B. Javidi, “Photon-counting double-random-phase encoding for secure image verification and retrieval,” J. Opt. 14(9), 094001 (2012).
[Crossref]

2011 (2)

2009 (1)

2005 (1)

2004 (1)

2000 (1)

1999 (1)

1995 (1)

1992 (1)

Abril, H. C.

E. Pérez-Cabré, H. C. Abril, M. S. Millán, and B. Javidi, “Photon-counting double-random-phase encoding for secure image verification and retrieval,” J. Opt. 14(9), 094001 (2012).
[Crossref]

Alfalou, A.

Barrera, J. F.

Brosseau, C.

Chen, W.

W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16(2), 025402 (2014).
[Crossref]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photon. 6(2), 120–155 (2014).
[Crossref]

X. Wang, W. Chen, and X. Chen, “Optical binary image encryption using aperture-key and dual wavelengths,” Opt. Express 22(23), 28077–28085 (2014).
[Crossref] [PubMed]

W. Chen, G. Situ, and X. Chen, “High-flexibility optical encryption via aperture movement,” Opt. Express 21(21), 24680–24691 (2013).
[Crossref] [PubMed]

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
[Crossref]

Chen, X.

W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16(2), 025402 (2014).
[Crossref]

X. Wang, W. Chen, and X. Chen, “Optical binary image encryption using aperture-key and dual wavelengths,” Opt. Express 22(23), 28077–28085 (2014).
[Crossref] [PubMed]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photon. 6(2), 120–155 (2014).
[Crossref]

W. Chen, G. Situ, and X. Chen, “High-flexibility optical encryption via aperture movement,” Opt. Express 21(21), 24680–24691 (2013).
[Crossref] [PubMed]

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
[Crossref]

Cho, M.

Gao, Q.

Gong, Q.

Javidi, B.

A. Markman and B. Javidi, “Full-phase photon-counting double-random-phase encryption,” J. Opt. Soc. Am. A 31(2), 394–403 (2014).
[PubMed]

W. Chen, B. Javidi, and X. Chen, “Advances in optical security systems,” Adv. Opt. Photon. 6(2), 120–155 (2014).
[Crossref]

A. Markman, B. Javidi, and M. Tehranipoor, “Photon-counting security tagging and verification using optically encoded QR codes,” IEEE Photon. J. 6(1), 6800609 (2014).
[Crossref]

A. Markman, J. Wang, and B. Javidi, “Three-dimensional integral imaging displays using a quick-response encoded elemental image array,” Optica 1(5), 332–335 (2014).
[Crossref]

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
[Crossref]

E. Pérez-Cabré, H. C. Abril, M. S. Millán, and B. Javidi, “Photon-counting double-random-phase encoding for secure image verification and retrieval,” J. Opt. 14(9), 094001 (2012).
[Crossref]

E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36(1), 22–24 (2011).
[Crossref] [PubMed]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13(23), 9310–9330 (2005).
[Crossref] [PubMed]

O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24(11), 762–764 (1999).
[Crossref] [PubMed]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
[Crossref] [PubMed]

Joseph, J.

Li, B.

Li, G.

Li, H.

Li, T.

Lin, C.

Liu, X.

Markman, A.

Matoba, O.

Millán, M. S.

E. Pérez-Cabré, H. C. Abril, M. S. Millán, and B. Javidi, “Photon-counting double-random-phase encoding for secure image verification and retrieval,” J. Opt. 14(9), 094001 (2012).
[Crossref]

Mira, A.

Morris, G. M.

Pérez-Cabré, E.

E. Pérez-Cabré, H. C. Abril, M. S. Millán, and B. Javidi, “Photon-counting double-random-phase encoding for secure image verification and retrieval,” J. Opt. 14(9), 094001 (2012).
[Crossref]

E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36(1), 22–24 (2011).
[Crossref] [PubMed]

Qin, Y.

Refregier, P.

Shen, X.

Shi, Y.

Singh, K.

Situ, G.

Stern, A.

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
[Crossref]

Tehranipoor, M.

A. Markman, B. Javidi, and M. Tehranipoor, “Photon-counting security tagging and verification using optically encoded QR codes,” IEEE Photon. J. 6(1), 6800609 (2014).
[Crossref]

Torroba, R.

Unnikrishnan, G.

Vélez, A.

Wang, J.

Wang, X.

Wang, Y.

Wang, Z.

Watson, E.

Watson, E. A.

Yeom, S.

Zhang, J.

Zhang, S.

Zhao, D.

Adv. Opt. Photon. (2)

Appl. Opt. (2)

IEEE Photon. J. (2)

A. Markman, B. Javidi, and M. Tehranipoor, “Photon-counting security tagging and verification using optically encoded QR codes,” IEEE Photon. J. 6(1), 6800609 (2014).
[Crossref]

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5(2), 6900113 (2013).
[Crossref]

J. Opt. (2)

W. Chen and X. Chen, “Double random phase encoding using phase reservation and compression,” J. Opt. 16(2), 025402 (2014).
[Crossref]

E. Pérez-Cabré, H. C. Abril, M. S. Millán, and B. Javidi, “Photon-counting double-random-phase encoding for secure image verification and retrieval,” J. Opt. 14(9), 094001 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (7)

Opt. Lett. (8)

Optica (1)

Other (3)

F. Sadjadi and B. Javidi, Physics of Automatic Target Recognition (Springer, 2007).

J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, 1990).

B. Javidi, ed., Optical and Digital Techniques for Information Security (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 (a) Primary image f(x,y) with 256×256 pixels size; (b) phase distribution of function ϕ( x , y ) .
Fig. 2
Fig. 2 Phase distribution of sparse encrypted data ϕ sp ( x , y ) corresponding to (a) 7%; (b) 11%; (c) 15% of the pixel size of image ϕ( x , y ) ; (d), (e), (f) are the decrypted results corresponding to (a), (b) and (c), respectively.
Fig. 3
Fig. 3 Correlation outputs with ω=0.3 corresponding to the decrypted data demonstrated in Figs. 2(d)-2(f), respectively.
Fig. 4
Fig. 4 Flowchart of the iterative process for the second method.
Fig. 5
Fig. 5 Relations between CC and the number of iterations for (a) the first cycle and (b) the second cycle; (c) Phase distribution of function p( x , y ) corresponding to M=30 and N=50 .
Fig. 6
Fig. 6 Decrypted image corresponding to the sparse phase function with (a) 7%; (b) 11%; (c) 15% of the pixel size of p( x , y ) . (d), (e), and (f) are correlation outputs with ω=0.3 corresponding to the decrypted data demonstrated in (a)-(c), respectively.
Fig. 7
Fig. 7 (a) Input text information and (b) its respective QR code. (c) Optically encrypted intensity pattern, I( x , y ) .
Fig. 8
Fig. 8 Flow chart of the iterative process for the third method.
Fig. 9
Fig. 9 (a)Relations between CC and the number of iterations; (b) phase distribution of function q( x , y ) corresponding to the iteration number, K=50 .
Fig. 10
Fig. 10 Sparse encrypted images respectively corresponding to (a) 6% and (b) 7.5% of the pixel size of q( x , y ) . (c) and (d) are optically decoded images corresponding to the decrypted data shown in (a) and (b), respectively.
Fig. 11
Fig. 11 Correlation outputs with ω=0.3 corresponding to the sparse encrypted distributions with (a) 6% and (b) 7.5% of the pixel size of q( x , y ) .
Fig. 12
Fig. 12 Relation between PCE value and sparsity in different methods with the same nonlinearity ( ω=0.3 ).
Fig. 13
Fig. 13 The correlation outputs with ω=0.3 for the case that a wrong parameter used for authentication. (a) λ=642.8nm(Δλ=10nm) ; (b) z 1 =51cm(Δ z 1 =1cm) ; (c) z 2 =31cm(Δ z 2 =1cm) .
Fig. 14
Fig. 14 (a) Representation of another input message and (b) its respective QR code. The correlation outputs (c) with QR code shown in (b); (d) without using any QR code.
Fig. 15
Fig. 15 (a) Image g(x,y) ; (b) representation of another input message and (c) its respective QR code. (d) Sparse encrypted phase distribution q sp (x,y) ; (e) decrypted image g sp (x,y) ; (f) correlation output with ω=0.3 .
Fig. 16
Fig. 16 The correlation outputs using another sparse function q sp (x,y) , together with (a) the QR code shown in Fig. 15 (c); (d) the QR code shown in Fig. 7 (b);

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ψ( x , y )= FrT d 2 ,λ { FrT d 1 ,λ [ f(x,y) r 1 (x,y) ] r 2 ( x , y ) },
FrT d,λ { u(x,y) }= exp(j 2πd /λ ) jλd u(x, y)exp{j π λd [ ( x x) 2 + ( y y) 2 ]}dxdy.
f sp (x,y)=| FrT d 1 ,λ { FrT d 2 ,λ [ ϕ sp ( x , y ) ] r 2 ( x , y ) } |,
NC(x,y)= | IFT[ c(μ,ν) | c(μ,ν) | ω1 ] | 2 ,
U m ( x , y )= FrT d 2 ,λ { FrT d 1 ,λ [ T m (x,y) r 1 (x,y) ] r 2 ( x , y ) }.
U m ( x , y )= | ψ( x , y ) | U m ( x , y ) / | U m ( x , y ) | .
T m (x,y)=| FrT d 1 , λ { FrT d 2 , λ [ U m ( x , y ) ] r 2 ( x , y ) } |.
T m+1 (x,y)=Filt[ | T m (x,y) | ],
ψ n ( x , y )= FrT d 2 ,λ { FrT d 1 ,λ { f n (x,y) r 1 (x,y) } r 2 ( x , y ) }.
ψ n ( x , y )= | ψ( x , y ) | ψ n ( x , y ) / | ψ n ( x , y ) | .
f n (x,y)= FrT d 1 , λ { FrT d 2 , λ [ ψ n ( x , y ) ] r 2 ( x , y ) }.
f n+1 (x,y)=| f n (x,y) |.
p( x , y )= ψ N ( x , y ) / | ψ N ( x , y ) |
I( x , y )= | FrT d 2 ,λ { FrT d 1 ,λ [ f(x,y)Q(x,y) r 1 (x,y) ] r 2 ( x , y ) } | 2 .
U (k) ( x , y )= FrT d 2 ,λ { FrT d 1 ,λ [ f (k) (x,y)Q(x,y) r 1 (x,y) ] r 2 ( x , y ) }.
ϕ (k) (x,y)= FrT d 2 ,λ { FrT d 1 ,λ [ I( x , y ) U (k) ( x , y ) / | U (k) ( x , y ) | ] r 2 ( x , y ) }.
f (k+1) (x,y)=| ϕ (k) (x,y) |.
q( x , y )= U (K) ( x , y ) / | U (K) ( x , y ) | .
f sp (x,y)=| FrT d 1 ,λ { FrT d 2 ,λ [ q sp ( x , y ) ] r 2 ( x , y ) } |,
c(μ,ν)=FT[ f sp (x,y) ] { FT[ f(x,y)Q(x,y) ] } ,

Metrics