Abstract

Optoelectronic performance of transparent conductive layers (TCLs) based on randomly arranged silver (Ag) nanorods (NRs) is simulated. Models for calculation of optical and electronic properties were proposed founded on finite-difference time-domain method and percolation theory respectively. Obtained simulation results are well conformed to experimental data. The influence of angle deviation of NR crossings on the transmittance and sheet resistance are demonstrated. The balance between transmittance and sheet resistance which can be easily set by varying the combinations of NR radius and NR number is shown. Our results demonstrate that randomly arranged Ag layers are promising candidates for flexible TCLs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical comparison of optical and electronic properties of uniformly and randomly arranged nano-porous ultra-thin layers

Aliaksandr Hubarevich, Mikita Marus, Weijun Fan, Aliaksandr Smirnov, Xiao Wei Sun, and Hong Wang
Opt. Express 23(14) 17860-17865 (2015)

Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film

Mikita Marus, Aliaksandr Hubarevich, Reuben Jeremy Weixiong Lim, Hui Huang, Aliaksandr Smirnov, Hong Wang, Weijun Fan, and Xiao Wei Sun
Opt. Mater. Express 7(3) 1105-1112 (2017)

Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells

Ju Won Lim, Young Tack Lee, Rina Pandey, Tae-Hee Yoo, Byoung-In Sang, Byeong-Kwon Ju, Do Kyung Hwang, and Won Kook Choi
Opt. Express 22(22) 26891-26899 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(S3Suppl 3), A355–A362 (2013).
    [Crossref] [PubMed]
  2. A. K. Kumar, C. W. Bae, L. Piao, and S.-H. Kim, “Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze,” Mater. Res. Bull. 48(8), 2944–2949 (2013).
    [Crossref]
  3. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [Crossref] [PubMed]
  4. B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
    [Crossref] [PubMed]
  5. M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, “16.1: Sub‐Micron Transparent Metal Mesh Conductor for Touch Screen Displays,” in SID Symposium Digest of Technical Papers (Wiley Online Library, 2014), pp. 194–196.
  6. C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8(8), 1739–1746 (1996).
    [Crossref]
  7. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
    [Crossref]
  8. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  9. S.-E. Kim, Y.-H. Han, B. Lee, and J.-C. Lee, “One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation,” Nanotechnology 21(7), 075302 (2010).
    [Crossref]
  10. A. Tao, P. Sinsermsuksakul, and P. Yang, “Polyhedral silver nanocrystals with distinct scattering signatures,” Angew. Chem. Int. Ed. Engl. 45(28), 4597–4601 (2006).
    [Crossref] [PubMed]
  11. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
    [Crossref] [PubMed]
  12. B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chem. Rev. 104(9), 3893–3946 (2004).
    [Crossref] [PubMed]
  13. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
    [Crossref] [PubMed]
  14. K. Chen, L. Tang, Y. Xia, and Y. Wang, “Silver(I)-Coordinated Organogel-Templated Fabrication of 3D Networks of Polymer Nanotubes,” Langmuir 24(24), 13838–13841 (2008).
    [Crossref] [PubMed]
  15. C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, “Silver nanowires: from scalable synthesis to recyclable foldable electronics,” Adv. Mater. 23(27), 3052–3056 (2011).
    [Crossref] [PubMed]
  16. Lumerical FDTD Solutions, https://www.lumerical.com/tcad-products/fdtd/ .
  17. B. Last and D. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27(25), 1719–1721 (1971).
    [Crossref]
  18. Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
    [Crossref]

2014 (1)

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

2013 (2)

S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(S3Suppl 3), A355–A362 (2013).
[Crossref] [PubMed]

A. K. Kumar, C. W. Bae, L. Piao, and S.-H. Kim, “Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze,” Mater. Res. Bull. 48(8), 2944–2949 (2013).
[Crossref]

2012 (2)

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

2011 (1)

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, “Silver nanowires: from scalable synthesis to recyclable foldable electronics,” Adv. Mater. 23(27), 3052–3056 (2011).
[Crossref] [PubMed]

2010 (1)

S.-E. Kim, Y.-H. Han, B. Lee, and J.-C. Lee, “One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation,” Nanotechnology 21(7), 075302 (2010).
[Crossref]

2008 (2)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

K. Chen, L. Tang, Y. Xia, and Y. Wang, “Silver(I)-Coordinated Organogel-Templated Fabrication of 3D Networks of Polymer Nanotubes,” Langmuir 24(24), 13838–13841 (2008).
[Crossref] [PubMed]

2006 (1)

A. Tao, P. Sinsermsuksakul, and P. Yang, “Polyhedral silver nanocrystals with distinct scattering signatures,” Angew. Chem. Int. Ed. Engl. 45(28), 4597–4601 (2006).
[Crossref] [PubMed]

2004 (1)

B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chem. Rev. 104(9), 3893–3946 (2004).
[Crossref] [PubMed]

2002 (1)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

2001 (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

2000 (1)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[Crossref] [PubMed]

1996 (1)

C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8(8), 1739–1746 (1996).
[Crossref]

1971 (1)

B. Last and D. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27(25), 1719–1721 (1971).
[Crossref]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Bae, C. W.

A. K. Kumar, C. W. Bae, L. Piao, and S.-H. Kim, “Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze,” Mater. Res. Bull. 48(8), 2944–2949 (2013).
[Crossref]

Chen, K.

K. Chen, L. Tang, Y. Xia, and Y. Wang, “Silver(I)-Coordinated Organogel-Templated Fabrication of 3D Networks of Polymer Nanotubes,” Langmuir 24(24), 13838–13841 (2008).
[Crossref] [PubMed]

Cushing, B. L.

B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chem. Rev. 104(9), 3893–3946 (2004).
[Crossref] [PubMed]

Demir, H. V.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Du, Q. G.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Gao, B.

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, “Silver nanowires: from scalable synthesis to recyclable foldable electronics,” Adv. Mater. 23(27), 3052–3056 (2011).
[Crossref] [PubMed]

Gao, J.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Gu, H.

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, “Silver nanowires: from scalable synthesis to recyclable foldable electronics,” Adv. Mater. 23(27), 3052–3056 (2011).
[Crossref] [PubMed]

Gu, M.

Han, B.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Han, Y.-H.

S.-E. Kim, Y.-H. Han, B. Lee, and J.-C. Lee, “One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation,” Nanotechnology 21(7), 075302 (2010).
[Crossref]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Herczynski, A.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Huang, Y.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Ito, T.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[Crossref] [PubMed]

Jia, B.

Kam, C. H.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Kempa, K.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Kim, S.-E.

S.-E. Kim, Y.-H. Han, B. Lee, and J.-C. Lee, “One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation,” Nanotechnology 21(7), 075302 (2010).
[Crossref]

Kim, S.-H.

A. K. Kumar, C. W. Bae, L. Piao, and S.-H. Kim, “Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze,” Mater. Res. Bull. 48(8), 2944–2949 (2013).
[Crossref]

Kolesnichenko, V. L.

B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chem. Rev. 104(9), 3893–3946 (2004).
[Crossref] [PubMed]

Kumar, A. K.

A. K. Kumar, C. W. Bae, L. Piao, and S.-H. Kim, “Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze,” Mater. Res. Bull. 48(8), 2944–2949 (2013).
[Crossref]

Last, B.

B. Last and D. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27(25), 1719–1721 (1971).
[Crossref]

Lee, B.

S.-E. Kim, Y.-H. Han, B. Lee, and J.-C. Lee, “One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation,” Nanotechnology 21(7), 075302 (2010).
[Crossref]

Lee, J.-C.

S.-E. Kim, Y.-H. Han, B. Lee, and J.-C. Lee, “One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation,” Nanotechnology 21(7), 075302 (2010).
[Crossref]

Li, R.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Lin, W.

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, “Silver nanowires: from scalable synthesis to recyclable foldable electronics,” Adv. Mater. 23(27), 3052–3056 (2011).
[Crossref] [PubMed]

Luo, J.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Martin, C. R.

C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8(8), 1739–1746 (1996).
[Crossref]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

O’Connor, C. J.

B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chem. Rev. 104(9), 3893–3946 (2004).
[Crossref] [PubMed]

Okazaki, S.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[Crossref] [PubMed]

Ouyang, Z.

Pei, K.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Peng, Q.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Piao, L.

A. K. Kumar, C. W. Bae, L. Piao, and S.-H. Kim, “Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze,” Mater. Res. Bull. 48(8), 2944–2949 (2013).
[Crossref]

Polman, A.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Ren, Z.

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Sathiyamoorthy, K.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Sinsermsuksakul, P.

A. Tao, P. Sinsermsuksakul, and P. Yang, “Polyhedral silver nanocrystals with distinct scattering signatures,” Angew. Chem. Int. Ed. Engl. 45(28), 4597–4601 (2006).
[Crossref] [PubMed]

Spinelli, P.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Sun, X. W.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Sun, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Tang, L.

K. Chen, L. Tang, Y. Xia, and Y. Wang, “Silver(I)-Coordinated Organogel-Templated Fabrication of 3D Networks of Polymer Nanotubes,” Langmuir 24(24), 13838–13841 (2008).
[Crossref] [PubMed]

Tao, A.

A. Tao, P. Sinsermsuksakul, and P. Yang, “Polyhedral silver nanocrystals with distinct scattering signatures,” Angew. Chem. Int. Ed. Engl. 45(28), 4597–4601 (2006).
[Crossref] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Thouless, D.

B. Last and D. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27(25), 1719–1721 (1971).
[Crossref]

van de Groep, J.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Van Duyne, R. P.

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Wang, Y.

K. Chen, L. Tang, Y. Xia, and Y. Wang, “Silver(I)-Coordinated Organogel-Templated Fabrication of 3D Networks of Polymer Nanotubes,” Langmuir 24(24), 13838–13841 (2008).
[Crossref] [PubMed]

Wong, C. P.

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, “Silver nanowires: from scalable synthesis to recyclable foldable electronics,” Adv. Mater. 23(27), 3052–3056 (2011).
[Crossref] [PubMed]

Xia, Y.

K. Chen, L. Tang, Y. Xia, and Y. Wang, “Silver(I)-Coordinated Organogel-Templated Fabrication of 3D Networks of Polymer Nanotubes,” Langmuir 24(24), 13838–13841 (2008).
[Crossref] [PubMed]

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Xie, S.

Xiong, M.

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, “Silver nanowires: from scalable synthesis to recyclable foldable electronics,” Adv. Mater. 23(27), 3052–3056 (2011).
[Crossref] [PubMed]

Yang, C.

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, “Silver nanowires: from scalable synthesis to recyclable foldable electronics,” Adv. Mater. 23(27), 3052–3056 (2011).
[Crossref] [PubMed]

Yang, P.

A. Tao, P. Sinsermsuksakul, and P. Yang, “Polyhedral silver nanocrystals with distinct scattering signatures,” Angew. Chem. Int. Ed. Engl. 45(28), 4597–4601 (2006).
[Crossref] [PubMed]

Yuen, M. M.

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, “Silver nanowires: from scalable synthesis to recyclable foldable electronics,” Adv. Mater. 23(27), 3052–3056 (2011).
[Crossref] [PubMed]

Zhang, L. P.

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Adv. Mater. (1)

C. Yang, H. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Xiong, and B. Gao, “Silver nanowires: from scalable synthesis to recyclable foldable electronics,” Adv. Mater. 23(27), 3052–3056 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. Tao, P. Sinsermsuksakul, and P. Yang, “Polyhedral silver nanocrystals with distinct scattering signatures,” Angew. Chem. Int. Ed. Engl. 45(28), 4597–4601 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Q. G. Du, K. Sathiyamoorthy, L. P. Zhang, H. V. Demir, C. H. Kam, and X. W. Sun, “A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared,” Appl. Phys. Lett. 101(18), 181112 (2012).
[Crossref]

Chem. Mater. (1)

C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8(8), 1739–1746 (1996).
[Crossref]

Chem. Rev. (2)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chem. Rev. 104(9), 3893–3946 (2004).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Langmuir (1)

K. Chen, L. Tang, Y. Xia, and Y. Wang, “Silver(I)-Coordinated Organogel-Templated Fabrication of 3D Networks of Polymer Nanotubes,” Langmuir 24(24), 13838–13841 (2008).
[Crossref] [PubMed]

Mater. Res. Bull. (1)

A. K. Kumar, C. W. Bae, L. Piao, and S.-H. Kim, “Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze,” Mater. Res. Bull. 48(8), 2944–2949 (2013).
[Crossref]

Nano Lett. (1)

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

S.-E. Kim, Y.-H. Han, B. Lee, and J.-C. Lee, “One-pot fabrication of various silver nanostructures on substrates using electron beam irradiation,” Nanotechnology 21(7), 075302 (2010).
[Crossref]

Nat Commun (1)

B. Han, Y. Huang, R. Li, Q. Peng, J. Luo, K. Pei, A. Herczynski, K. Kempa, Z. Ren, and J. Gao, “Bio-inspired networks for optoelectronic applications,” Nat Commun 5, 5674 (2014).
[Crossref] [PubMed]

Nature (1)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

B. Last and D. Thouless, “Percolation theory and electrical conductivity,” Phys. Rev. Lett. 27(25), 1719–1721 (1971).
[Crossref]

Science (1)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Other (2)

Lumerical FDTD Solutions, https://www.lumerical.com/tcad-products/fdtd/ .

M. Aryal, J. Geddes, O. Seitz, J. Wassei, I. McMackin, and B. Kobrin, “16.1: Sub‐Micron Transparent Metal Mesh Conductor for Touch Screen Displays,” in SID Symposium Digest of Technical Papers (Wiley Online Library, 2014), pp. 194–196.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Geometrical model for distribution of uniformly (a) and randomly (b, c) arranged NRs along X-Y plane, where (b) and (c) differ by NR density. Red rectangles are unit simulation cells equal to a2 and 10 × 10 μm for uniform and random NRs, respectively.
Fig. 2
Fig. 2 Calculated values of effective NR crossings number N i * (a, b) and NR crossings effective length l i * (c, d).
Fig. 3
Fig. 3 Transmittance versus wavelength dependency for different surface coverage of randomly arranged NRs. (a) Experimental results reprinted with permission from ref [1]. Copyright [2011] The Optical Society. (b) Simulated results by FDTD and percolation models.
Fig. 4
Fig. 4 (a) Influence of angle deviation |αd| on optical properties of NR grid. The NR radius r and surface coverage parameters are 50 nm and 35%, respectively. (b) Influence of NR radius r on optical properties of NR grid. The NR angle deviation absolute value |αd| and surface coverage parameters are 90° and 35% respectively.
Fig. 5
Fig. 5 Influence of NR radius r and NR number on the average transmittance in visible wavelength range (left) and sheet resistance (right).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R sh = 1 h σ 0 ( ϕ f ϕ crit ) t ,
ϕ f ϕ crit = ( N i * N crit ) V c V uc ,
V c =π r 2 l i * ,
l i * = 2r sin( α i ) ,
R sh = 1 h σ 0 ( V uc ×0.647 1.06×2×π r 3 N ) t = 1 h σ 0 ( V uc 3.277×π r 3 N ) t .

Metrics