Abstract

Modulation transfer function (MTF) can be used to evaluate the imaging performance of on-board optical remote sensing sensors, as well as recover and restore images to improve imaging quality. Laboratory measurement approaches for MTF have achieved high precision. However, they are not yet suitable for on-board measurement. In this paper, a new five-step approach to calculate MTF of space optical remote sensing sensors is proposed. First, a pixel motion model is used to extract the conditional sub-frame images. Second, a mathematical morphology algorithm and a correlation–homomorphic filter algorithm are used to eliminate noise and enhance sub-frame image. Third, an image partial differentiation determines the accurate position of edge points. Fourth, a model optical function is used to build a high-resolution edge spread function. Finally, MTF is calculated by derivation and Fourier transform. The experiment shows that the assessment method of MTF is superior to others.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of MTF measurements using edge method: towards reference data set

Françoise Viallefont-Robinet, Dennis Helder, Renaud Fraisse, Amy Newbury, Frans van den Bergh, DongHan Lee, and Sébastien Saunier
Opt. Express 26(26) 33625-33648 (2018)

Using sub-resolution features for self-compensation of the modulation transfer function in remote sensing

Jin Li, Zilong Liu, and Fengdeng Liu
Opt. Express 25(4) 4018-4037 (2017)

Two-dimensional modulation transfer functions of image scanning systems

R. M. Simonds
Appl. Opt. 20(4) 619-622 (1981)

References

  • View by:
  • |
  • |
  • |

  1. K. Sun, L. Huang, X. Cheng, and H. Jiang, “Analysis and simulation of the phenomenon of secondary spots of the TDI CCD camera irradiated by CW laser,” Opt. Express 19(24), 23901–23907 (2011).
    [Crossref] [PubMed]
  2. D. Wang, T. Zhang, and H. Kuang, “Clocking smear analysis and reduction for multi phase TDI CCD in remote sensing system,” Opt. Express 19(6), 4868–4880 (2011).
    [Crossref] [PubMed]
  3. J. Jeong and M. Y. Kim, “Adaptive imaging system with spatial light modulator for robust shape measurement of partially specular objects,” Opt. Express 18(26), 27787–27801 (2010).
    [Crossref] [PubMed]
  4. E. Oh and J. K. Choi, “GOCI image enhancement using an MTF compensation technique for coastal water applications,” Opt. Express 22(22), 26908–26918 (2014).
    [Crossref] [PubMed]
  5. L. Y. Cui, B. D. Xue, X. G. Cao, J. K. Dong, and J. N. Wang, “Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(20), 21269–21283 (2010).
    [Crossref] [PubMed]
  6. T. Vettenburg, N. Bustin, and A. R. Harvey, “Fidelity optimization for aberration-tolerant hybrid imaging systems,” Opt. Express 18(9), 9220–9228 (2010).
    [Crossref] [PubMed]
  7. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref] [PubMed]
  8. H. T. Hsieh, H. C. Wei, M. H. Lin, W. Y. Hsu, Y. C. Cheng, and G. D. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18(11), 11097–11104 (2010).
    [Crossref] [PubMed]
  9. I. Klapp and D. Mendlovic, “Improvement of matrix condition of Hybrid, space variant optics by the means of parallel optics design,” Opt. Express 17(14), 11673–11689 (2009).
    [Crossref] [PubMed]
  10. Z. Zhou, F. Gao, H. Zhao, L. Zhang, L. Ren, Z. Li, M. U. Ghani, and H. Liu, “Monotone spline regression for accurate MTF measurement at low frequencies,” Opt. Express 22(19), 22446–22455 (2014).
    [Crossref] [PubMed]
  11. S. M. Backman, A. J. Makynen, T. T. Kolehmainen, and K. M. Ojala, “Random target method for fast MTF inspection,” Opt. Express 12(12), 2610–2615 (2004).
    [Crossref] [PubMed]
  12. F. Viallefont-Robinet, “Edge method for on-orbit defocus assessment,” Opt. Express 18(20), 20845–20851 (2010).
    [Crossref] [PubMed]
  13. K. Masaoka, T. Yamashita, Y. Nishida, and M. Sugawara, “Modified slanted-edge method and multidirectional modulation transfer function estimation,” Opt. Express 22(5), 6040–6046 (2014).
    [Crossref] [PubMed]
  14. S. Horiuchi, S. Yoshida, and M. Yamamoto, “Simulation of modulation transfer function using a rendering method,” Opt. Express 21(6), 7373–7383 (2013).
    [Crossref] [PubMed]
  15. P. W. Nugent, J. A. Shaw, M. R. Kehoe, C. W. Smith, T. S. Moon, and R. C. Swanson, “Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity,” Opt. Eng. 49(10), 103201 (2010).
    [Crossref]
  16. H. L. Robert, L. Zeljko, E. G. James, K. Gillian, A. S. Michael, and Y. Naoki, “The SDSS imaging pipelines,” Proc. SPIE 4836, 350–356 (2002).
    [Crossref]
  17. X. Chen, N. George, G. Agranov, C. Liu, and B. Gravelle, “Sensor modulation transfer function measurement using band-limited laser speckle,” Opt. Express 16(24), 20047–20059 (2008).
    [Crossref] [PubMed]
  18. A. M. Pozo, A. Ferrero, M. Rubiño, J. Campos, and A. Pons, “Improvements for determining the modulation transfer function of charge-coupled devices by the speckle method,” Opt. Express 14(13), 5928–5936 (2006).
    [Crossref] [PubMed]
  19. D. Leger, J. Duffaut, and F. Robinet, “MTF measurement using spotlight,” in Proceedings of IEEE International Geoscience and Remote Sesning Symposium, (Pasadena, CA, USA, 1994). pp. 2010–2012.
  20. T. Choi, D. Helder, and E. Micijevic, “Edge method” in IKONOS satellite in orbit modulation transfer function (MTF) measurement using edge and pulse method (Electrical Engineering Department South Dakota State University, USA, 2002).
  21. G. S. El-tawel and A. K. Helmy, “An edge detection scheme based on least squares support vector machine in a contourlet HMT domian,” Appl. Soft Comput. 26, 418–427 (2015).
    [Crossref]
  22. G. D. Boreman, “Diffraction modulation transfer function,” in Moudlation Transfer Function in Optical and Electro-Optical Systems, SPIE Press, (Bellingham, WA, 2001).
  23. S. E. Reichenbach, D. E. Koehler, and D. W. Strelow, “Restoration and reconstruction of AVHRR images,” IEEE Trans. Geosci. Rem. Sens. 33(4), 997–1007 (1995).
    [Crossref]
  24. C. Latry, V. Despringre, and C. Valorge, “Automatic MTF measurement through a least square method,” Proc. SPIE 5570, 233–244 (2004).
    [Crossref]
  25. W. H. Steel, “The defocused image of sinusoidal gratings,” Opt. Acta (Lond.) 3(2), 65–74 (1956).
    [Crossref]
  26. H.-S. Wong, Y. L. Yao, and E. S. Schlig, “TDI charge-coupled devices:design and application,” IBM J. Res. Develop. 36(1), 83–106 (1992).
    [Crossref]
  27. F. Viallefont-Robinet and D. Léger, “Improvement of the edge method for on-orbit MTF measurement,” Opt. Express 18(4), 3531–3545 (2010).
    [Crossref] [PubMed]
  28. H. Hwang, Y. Choi, S. Kwak, M. Kim, and W. Park, “MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method,” Proc. SPIE 7109, 710905 (2008).
    [Crossref]

2015 (1)

G. S. El-tawel and A. K. Helmy, “An edge detection scheme based on least squares support vector machine in a contourlet HMT domian,” Appl. Soft Comput. 26, 418–427 (2015).
[Crossref]

2014 (3)

2013 (1)

2011 (2)

2010 (8)

P. W. Nugent, J. A. Shaw, M. R. Kehoe, C. W. Smith, T. S. Moon, and R. C. Swanson, “Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity,” Opt. Eng. 49(10), 103201 (2010).
[Crossref]

F. Viallefont-Robinet and D. Léger, “Improvement of the edge method for on-orbit MTF measurement,” Opt. Express 18(4), 3531–3545 (2010).
[Crossref] [PubMed]

T. Vettenburg, N. Bustin, and A. R. Harvey, “Fidelity optimization for aberration-tolerant hybrid imaging systems,” Opt. Express 18(9), 9220–9228 (2010).
[Crossref] [PubMed]

H. T. Hsieh, H. C. Wei, M. H. Lin, W. Y. Hsu, Y. C. Cheng, and G. D. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18(11), 11097–11104 (2010).
[Crossref] [PubMed]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

F. Viallefont-Robinet, “Edge method for on-orbit defocus assessment,” Opt. Express 18(20), 20845–20851 (2010).
[Crossref] [PubMed]

L. Y. Cui, B. D. Xue, X. G. Cao, J. K. Dong, and J. N. Wang, “Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(20), 21269–21283 (2010).
[Crossref] [PubMed]

J. Jeong and M. Y. Kim, “Adaptive imaging system with spatial light modulator for robust shape measurement of partially specular objects,” Opt. Express 18(26), 27787–27801 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

X. Chen, N. George, G. Agranov, C. Liu, and B. Gravelle, “Sensor modulation transfer function measurement using band-limited laser speckle,” Opt. Express 16(24), 20047–20059 (2008).
[Crossref] [PubMed]

H. Hwang, Y. Choi, S. Kwak, M. Kim, and W. Park, “MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method,” Proc. SPIE 7109, 710905 (2008).
[Crossref]

2006 (1)

2004 (2)

S. M. Backman, A. J. Makynen, T. T. Kolehmainen, and K. M. Ojala, “Random target method for fast MTF inspection,” Opt. Express 12(12), 2610–2615 (2004).
[Crossref] [PubMed]

C. Latry, V. Despringre, and C. Valorge, “Automatic MTF measurement through a least square method,” Proc. SPIE 5570, 233–244 (2004).
[Crossref]

2002 (1)

H. L. Robert, L. Zeljko, E. G. James, K. Gillian, A. S. Michael, and Y. Naoki, “The SDSS imaging pipelines,” Proc. SPIE 4836, 350–356 (2002).
[Crossref]

1995 (1)

S. E. Reichenbach, D. E. Koehler, and D. W. Strelow, “Restoration and reconstruction of AVHRR images,” IEEE Trans. Geosci. Rem. Sens. 33(4), 997–1007 (1995).
[Crossref]

1992 (1)

H.-S. Wong, Y. L. Yao, and E. S. Schlig, “TDI charge-coupled devices:design and application,” IBM J. Res. Develop. 36(1), 83–106 (1992).
[Crossref]

1956 (1)

W. H. Steel, “The defocused image of sinusoidal gratings,” Opt. Acta (Lond.) 3(2), 65–74 (1956).
[Crossref]

Agranov, G.

Backman, S. M.

Bustin, N.

Campos, J.

Cao, X. G.

Chen, X.

Cheng, X.

Cheng, Y. C.

Choi, J. K.

Choi, Y.

H. Hwang, Y. Choi, S. Kwak, M. Kim, and W. Park, “MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method,” Proc. SPIE 7109, 710905 (2008).
[Crossref]

Cui, L. Y.

Despringre, V.

C. Latry, V. Despringre, and C. Valorge, “Automatic MTF measurement through a least square method,” Proc. SPIE 5570, 233–244 (2004).
[Crossref]

Dong, J. K.

Duffaut, J.

D. Leger, J. Duffaut, and F. Robinet, “MTF measurement using spotlight,” in Proceedings of IEEE International Geoscience and Remote Sesning Symposium, (Pasadena, CA, USA, 1994). pp. 2010–2012.

El-tawel, G. S.

G. S. El-tawel and A. K. Helmy, “An edge detection scheme based on least squares support vector machine in a contourlet HMT domian,” Appl. Soft Comput. 26, 418–427 (2015).
[Crossref]

Ferrero, A.

Gao, F.

George, N.

Ghani, M. U.

Gillian, K.

H. L. Robert, L. Zeljko, E. G. James, K. Gillian, A. S. Michael, and Y. Naoki, “The SDSS imaging pipelines,” Proc. SPIE 4836, 350–356 (2002).
[Crossref]

Gravelle, B.

Harvey, A. R.

Helmy, A. K.

G. S. El-tawel and A. K. Helmy, “An edge detection scheme based on least squares support vector machine in a contourlet HMT domian,” Appl. Soft Comput. 26, 418–427 (2015).
[Crossref]

Horiuchi, S.

Hsieh, H. T.

Hsu, W. Y.

Hua, H.

Huang, L.

Hwang, H.

H. Hwang, Y. Choi, S. Kwak, M. Kim, and W. Park, “MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method,” Proc. SPIE 7109, 710905 (2008).
[Crossref]

James, E. G.

H. L. Robert, L. Zeljko, E. G. James, K. Gillian, A. S. Michael, and Y. Naoki, “The SDSS imaging pipelines,” Proc. SPIE 4836, 350–356 (2002).
[Crossref]

Jeong, J.

Jiang, H.

Kehoe, M. R.

P. W. Nugent, J. A. Shaw, M. R. Kehoe, C. W. Smith, T. S. Moon, and R. C. Swanson, “Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity,” Opt. Eng. 49(10), 103201 (2010).
[Crossref]

Kim, M.

H. Hwang, Y. Choi, S. Kwak, M. Kim, and W. Park, “MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method,” Proc. SPIE 7109, 710905 (2008).
[Crossref]

Kim, M. Y.

Klapp, I.

Koehler, D. E.

S. E. Reichenbach, D. E. Koehler, and D. W. Strelow, “Restoration and reconstruction of AVHRR images,” IEEE Trans. Geosci. Rem. Sens. 33(4), 997–1007 (1995).
[Crossref]

Kolehmainen, T. T.

Kuang, H.

Kwak, S.

H. Hwang, Y. Choi, S. Kwak, M. Kim, and W. Park, “MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method,” Proc. SPIE 7109, 710905 (2008).
[Crossref]

Latry, C.

C. Latry, V. Despringre, and C. Valorge, “Automatic MTF measurement through a least square method,” Proc. SPIE 5570, 233–244 (2004).
[Crossref]

Leger, D.

D. Leger, J. Duffaut, and F. Robinet, “MTF measurement using spotlight,” in Proceedings of IEEE International Geoscience and Remote Sesning Symposium, (Pasadena, CA, USA, 1994). pp. 2010–2012.

Léger, D.

Li, Z.

Lin, M. H.

Liu, C.

Liu, H.

Liu, S.

Makynen, A. J.

Masaoka, K.

Mendlovic, D.

Michael, A. S.

H. L. Robert, L. Zeljko, E. G. James, K. Gillian, A. S. Michael, and Y. Naoki, “The SDSS imaging pipelines,” Proc. SPIE 4836, 350–356 (2002).
[Crossref]

Moon, T. S.

P. W. Nugent, J. A. Shaw, M. R. Kehoe, C. W. Smith, T. S. Moon, and R. C. Swanson, “Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity,” Opt. Eng. 49(10), 103201 (2010).
[Crossref]

Naoki, Y.

H. L. Robert, L. Zeljko, E. G. James, K. Gillian, A. S. Michael, and Y. Naoki, “The SDSS imaging pipelines,” Proc. SPIE 4836, 350–356 (2002).
[Crossref]

Nishida, Y.

Nugent, P. W.

P. W. Nugent, J. A. Shaw, M. R. Kehoe, C. W. Smith, T. S. Moon, and R. C. Swanson, “Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity,” Opt. Eng. 49(10), 103201 (2010).
[Crossref]

Oh, E.

Ojala, K. M.

Park, W.

H. Hwang, Y. Choi, S. Kwak, M. Kim, and W. Park, “MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method,” Proc. SPIE 7109, 710905 (2008).
[Crossref]

Pons, A.

Pozo, A. M.

Reichenbach, S. E.

S. E. Reichenbach, D. E. Koehler, and D. W. Strelow, “Restoration and reconstruction of AVHRR images,” IEEE Trans. Geosci. Rem. Sens. 33(4), 997–1007 (1995).
[Crossref]

Ren, L.

Robert, H. L.

H. L. Robert, L. Zeljko, E. G. James, K. Gillian, A. S. Michael, and Y. Naoki, “The SDSS imaging pipelines,” Proc. SPIE 4836, 350–356 (2002).
[Crossref]

Robinet, F.

D. Leger, J. Duffaut, and F. Robinet, “MTF measurement using spotlight,” in Proceedings of IEEE International Geoscience and Remote Sesning Symposium, (Pasadena, CA, USA, 1994). pp. 2010–2012.

Rubiño, M.

Schlig, E. S.

H.-S. Wong, Y. L. Yao, and E. S. Schlig, “TDI charge-coupled devices:design and application,” IBM J. Res. Develop. 36(1), 83–106 (1992).
[Crossref]

Shaw, J. A.

P. W. Nugent, J. A. Shaw, M. R. Kehoe, C. W. Smith, T. S. Moon, and R. C. Swanson, “Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity,” Opt. Eng. 49(10), 103201 (2010).
[Crossref]

Smith, C. W.

P. W. Nugent, J. A. Shaw, M. R. Kehoe, C. W. Smith, T. S. Moon, and R. C. Swanson, “Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity,” Opt. Eng. 49(10), 103201 (2010).
[Crossref]

Steel, W. H.

W. H. Steel, “The defocused image of sinusoidal gratings,” Opt. Acta (Lond.) 3(2), 65–74 (1956).
[Crossref]

Strelow, D. W.

S. E. Reichenbach, D. E. Koehler, and D. W. Strelow, “Restoration and reconstruction of AVHRR images,” IEEE Trans. Geosci. Rem. Sens. 33(4), 997–1007 (1995).
[Crossref]

Su, G. D.

Sugawara, M.

Sun, K.

Swanson, R. C.

P. W. Nugent, J. A. Shaw, M. R. Kehoe, C. W. Smith, T. S. Moon, and R. C. Swanson, “Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity,” Opt. Eng. 49(10), 103201 (2010).
[Crossref]

Valorge, C.

C. Latry, V. Despringre, and C. Valorge, “Automatic MTF measurement through a least square method,” Proc. SPIE 5570, 233–244 (2004).
[Crossref]

Vettenburg, T.

Viallefont-Robinet, F.

Wang, D.

Wang, J. N.

Wei, H. C.

Wong, H.-S.

H.-S. Wong, Y. L. Yao, and E. S. Schlig, “TDI charge-coupled devices:design and application,” IBM J. Res. Develop. 36(1), 83–106 (1992).
[Crossref]

Xue, B. D.

Yamamoto, M.

Yamashita, T.

Yao, Y. L.

H.-S. Wong, Y. L. Yao, and E. S. Schlig, “TDI charge-coupled devices:design and application,” IBM J. Res. Develop. 36(1), 83–106 (1992).
[Crossref]

Yoshida, S.

Zeljko, L.

H. L. Robert, L. Zeljko, E. G. James, K. Gillian, A. S. Michael, and Y. Naoki, “The SDSS imaging pipelines,” Proc. SPIE 4836, 350–356 (2002).
[Crossref]

Zhang, L.

Zhang, T.

Zhao, H.

Zhou, Z.

Appl. Soft Comput. (1)

G. S. El-tawel and A. K. Helmy, “An edge detection scheme based on least squares support vector machine in a contourlet HMT domian,” Appl. Soft Comput. 26, 418–427 (2015).
[Crossref]

IBM J. Res. Develop. (1)

H.-S. Wong, Y. L. Yao, and E. S. Schlig, “TDI charge-coupled devices:design and application,” IBM J. Res. Develop. 36(1), 83–106 (1992).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

S. E. Reichenbach, D. E. Koehler, and D. W. Strelow, “Restoration and reconstruction of AVHRR images,” IEEE Trans. Geosci. Rem. Sens. 33(4), 997–1007 (1995).
[Crossref]

Opt. Acta (Lond.) (1)

W. H. Steel, “The defocused image of sinusoidal gratings,” Opt. Acta (Lond.) 3(2), 65–74 (1956).
[Crossref]

Opt. Eng. (1)

P. W. Nugent, J. A. Shaw, M. R. Kehoe, C. W. Smith, T. S. Moon, and R. C. Swanson, “Measuring the modulation transfer function of an imaging spectrometer with rooflines of opportunity,” Opt. Eng. 49(10), 103201 (2010).
[Crossref]

Opt. Express (17)

X. Chen, N. George, G. Agranov, C. Liu, and B. Gravelle, “Sensor modulation transfer function measurement using band-limited laser speckle,” Opt. Express 16(24), 20047–20059 (2008).
[Crossref] [PubMed]

A. M. Pozo, A. Ferrero, M. Rubiño, J. Campos, and A. Pons, “Improvements for determining the modulation transfer function of charge-coupled devices by the speckle method,” Opt. Express 14(13), 5928–5936 (2006).
[Crossref] [PubMed]

K. Sun, L. Huang, X. Cheng, and H. Jiang, “Analysis and simulation of the phenomenon of secondary spots of the TDI CCD camera irradiated by CW laser,” Opt. Express 19(24), 23901–23907 (2011).
[Crossref] [PubMed]

D. Wang, T. Zhang, and H. Kuang, “Clocking smear analysis and reduction for multi phase TDI CCD in remote sensing system,” Opt. Express 19(6), 4868–4880 (2011).
[Crossref] [PubMed]

J. Jeong and M. Y. Kim, “Adaptive imaging system with spatial light modulator for robust shape measurement of partially specular objects,” Opt. Express 18(26), 27787–27801 (2010).
[Crossref] [PubMed]

E. Oh and J. K. Choi, “GOCI image enhancement using an MTF compensation technique for coastal water applications,” Opt. Express 22(22), 26908–26918 (2014).
[Crossref] [PubMed]

L. Y. Cui, B. D. Xue, X. G. Cao, J. K. Dong, and J. N. Wang, “Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence,” Opt. Express 18(20), 21269–21283 (2010).
[Crossref] [PubMed]

T. Vettenburg, N. Bustin, and A. R. Harvey, “Fidelity optimization for aberration-tolerant hybrid imaging systems,” Opt. Express 18(9), 9220–9228 (2010).
[Crossref] [PubMed]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

H. T. Hsieh, H. C. Wei, M. H. Lin, W. Y. Hsu, Y. C. Cheng, and G. D. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18(11), 11097–11104 (2010).
[Crossref] [PubMed]

I. Klapp and D. Mendlovic, “Improvement of matrix condition of Hybrid, space variant optics by the means of parallel optics design,” Opt. Express 17(14), 11673–11689 (2009).
[Crossref] [PubMed]

Z. Zhou, F. Gao, H. Zhao, L. Zhang, L. Ren, Z. Li, M. U. Ghani, and H. Liu, “Monotone spline regression for accurate MTF measurement at low frequencies,” Opt. Express 22(19), 22446–22455 (2014).
[Crossref] [PubMed]

S. M. Backman, A. J. Makynen, T. T. Kolehmainen, and K. M. Ojala, “Random target method for fast MTF inspection,” Opt. Express 12(12), 2610–2615 (2004).
[Crossref] [PubMed]

F. Viallefont-Robinet, “Edge method for on-orbit defocus assessment,” Opt. Express 18(20), 20845–20851 (2010).
[Crossref] [PubMed]

K. Masaoka, T. Yamashita, Y. Nishida, and M. Sugawara, “Modified slanted-edge method and multidirectional modulation transfer function estimation,” Opt. Express 22(5), 6040–6046 (2014).
[Crossref] [PubMed]

S. Horiuchi, S. Yoshida, and M. Yamamoto, “Simulation of modulation transfer function using a rendering method,” Opt. Express 21(6), 7373–7383 (2013).
[Crossref] [PubMed]

F. Viallefont-Robinet and D. Léger, “Improvement of the edge method for on-orbit MTF measurement,” Opt. Express 18(4), 3531–3545 (2010).
[Crossref] [PubMed]

Proc. SPIE (3)

H. Hwang, Y. Choi, S. Kwak, M. Kim, and W. Park, “MTF assessment of high resolution satellite images using ISO 12233 slanted-edge method,” Proc. SPIE 7109, 710905 (2008).
[Crossref]

C. Latry, V. Despringre, and C. Valorge, “Automatic MTF measurement through a least square method,” Proc. SPIE 5570, 233–244 (2004).
[Crossref]

H. L. Robert, L. Zeljko, E. G. James, K. Gillian, A. S. Michael, and Y. Naoki, “The SDSS imaging pipelines,” Proc. SPIE 4836, 350–356 (2002).
[Crossref]

Other (3)

G. D. Boreman, “Diffraction modulation transfer function,” in Moudlation Transfer Function in Optical and Electro-Optical Systems, SPIE Press, (Bellingham, WA, 2001).

D. Leger, J. Duffaut, and F. Robinet, “MTF measurement using spotlight,” in Proceedings of IEEE International Geoscience and Remote Sesning Symposium, (Pasadena, CA, USA, 1994). pp. 2010–2012.

T. Choi, D. Helder, and E. Micijevic, “Edge method” in IKONOS satellite in orbit modulation transfer function (MTF) measurement using edge and pulse method (Electrical Engineering Department South Dakota State University, USA, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1 The blurring point image can be seen as the result of the convolution of the point spread function and the original image.
Fig. 2
Fig. 2 Imaging geometrical relationships of optical remote sensing sensors.
Fig. 3
Fig. 3 MTF without noise: (a) edge image, (b) LSF, (c) PSF, and (d) MTF.
Fig. 4
Fig. 4 MTF without noise: (a) edge image, (b) LSF, (c) PSF, and (d) MTF.
Fig. 5
Fig. 5 Optical camera imaging link model.
Fig. 6
Fig. 6 Building high-resolution ESF.
Fig. 7
Fig. 7 The entire MTF acquisition procedure.
Fig. 8
Fig. 8 MTFs at the Nyquist frequency by laboratory testing method.
Fig. 9
Fig. 9 Extracted edge sub-frame image.
Fig. 10
Fig. 10 Sub-pixel position of edge.
Fig. 11
Fig. 11 ESF curve.
Fig. 12
Fig. 12 LSF curve.
Fig. 13
Fig. 13 MTF curve.
Fig. 14
Fig. 14 (a) Original image, (b) restored image by ISO12233 method, and (c) restored image by our method.
Fig. 15
Fig. 15 QuickBird satellite testing image.
Fig. 16
Fig. 16 Extracted MTFs of the different methods.
Fig. 17
Fig. 17 (a) experiment camera and (b) standard vertical edge image.
Fig. 18
Fig. 18 Standard vertical edge image is acquired by our camera in laboratory.
Fig. 19
Fig. 19 SPOT satellite edge image.
Fig. 20
Fig. 20 Extracted MTFs of the different methods.

Tables (5)

Tables Icon

Table 1 Extracted average MTF of the three methods at the Nyquist frequency

Tables Icon

Table 2 Statistical results

Tables Icon

Table 3 MTF values at Nyquist frequency

Tables Icon

Table 4 MTF values at Nyquist frequency

Tables Icon

Table 5 MTF values at Nyquist frequency

Equations (53)

Equations on this page are rendered with MathJax. Learn more.

g(x,y)=f(x,y)h(x,y),
G(ξ,η)=F(ξ,η)H(ξ,η).
MTF=| G(ξ,η) F(ξ,η) |=| H(ξ,η) e jθ(ξ,η) |=| H(ξ,η) |.
g point (x,y)= f point (x,y)PSF(x,y).
MTF=| {PSF(x,y)} |.
MTF=| {LSF(x)} |.
LSF(x)= d dx [ESF(x)].
g(x,y)=[ f(x,y)h(x,y) ]w(x,y)ω(x,y).
G(ξ,η)=[ F(ξ,η).H(ξ,η) ]W(ξ,η)Ω(ξ,η) ,
f(x,y)= a x x δ(τ)dτ + b x = a x t(x)+ b x ,
g(x,y)=[ a x t(x)+ b x ]h(x,y).
G(ξ,η)=[ a x .T(ξ)+ b x δ(ξ) ]H(ξ,η).
MTF=| G(ξ,μ) a x T(ξ)+ b x δ(ξ) |,
L UE =[ cos( i 0 ) sin( i 0 ) 0 0 sin( i 0 ) cos( i 0 ) 0 0 0 0 1 0 0 0 0 1 ][ cos( γ 0 ) 0 sin( γ 0 ) 0 0 1 0 0 sin( γ 0 ) 0 cos( γ 0 ) 0 0 0 0 1 ][ 1 0 0 0 0 1 0 0 0 0 1 R gij 0 0 0 1 ].
L EI =[ cosωt 0 sinωt 0 0 1 0 0 sinωt 0 cosωt 0 0 0 0 1 ],
L IB =[ cos( i 0 ) sin( i 0 ) 0 0 sin( i 0 ) cos( i 0 ) 0 0 0 0 1 0 0 0 0 1 ][ 1 0 0 0 0 1 0 0 0 0 1 RH 0 0 0 1 ][ cos(γ) sin(γ) 0 0 sin(γ) cos(γ) 0 0 0 0 1 0 0 0 0 1 ].
L BS =[ cos(θ) 0 sin(θ) 0 0 1 0 0 sin(θ) 0 cos(θ) 0 0 0 0 1 ][ 1 0 0 0 0 cos(φ) sin(φ) 0 0 sin(φ) cos(φ) 0 0 0 0 1 ][ cos(ψ) sin(ψ) 0 0 sin(ψ) cos(ψ) 0 0 0 0 1 0 0 0 0 1 ],
L SCP =[ f/L 0 0 0 0 f/L 0 0 0 0 f/L f 0 0 0 1 ].
P=[ p 1 p 2 p 3 1 ]= L GE × L EI × L IB × L BS × L SCP ×[ g 1 g 2 0 1 ].
V P = dP dt |=[ d P 1 /dt d P 2 /dt d P 3 /dt 0 ]=[ V p1 V p2 V p3 0 ],
β=arctan( V p2 V p1 ).
G(ξ,η)=F(ξ,η)H(ξ,η)+N(ξ,η).
TF= G(ξ,η) F(ξ,η) + N(ξ,η) F(ξ,η) .
h(x,y)=fΘb = min (i,j) D b (x+i,y+j) D f [ f(x+i,y+j)b(i,j) ].
h(x,y)=fb = min (i,j) D b (x+i,y+j) D f [ f(xi,yj)+b(i,j) ].
B(x,y) = 1 2(K1)+1 × 1 2(L1)+1 × i=(K1) K1 j=(L1) L1 o(x+i,y+i) .
T(x,y) = f(x,y)B(x,y).
f(x,y)=i(x,y)×r(x,y),
ln(f(x,y))=ln(i(x,y))+ln(r(x,y)).
c(t) = lnf(t)h(t)=ln(i(t))h(t)+ln(r(t))h(t) = 0 lni(τ) h(τt)dτ+ 0 lnr(τ) h(τt)dτ.
c(x,y) = lnf(x,y)h(x,y) =ln(i(x,y))h(x,y)+ln(r(x,y))h(x,y) = m=0 M1 n=0 N1 lni(m,n)h(mx,ny) +lnr(m,n)h(mx,ny).
C filter = ln F org H filter =ln I org H filter +ln R org H filter .
C(u,v) = F(u,v)H(u,v)=I(u,v)H(u,v)+R(u,v)H(u,v).
H(u,v)=( γ H γ L )[ 1 e c( D 2 ( u,v ) )/ D 0 2 ]+ γ L ,
Δc(x,y)=c(x+1,y)c(x,y).
Δg'(i,j)=g'(u+1,v)g'(u,v).
I(Δg')= i=0 2 j=0 2 | Δg'(i,j) | .
α=angular(min(I(Δg'))).
a( x )= a 1 x 3 + a 2 x 2 + a 3 x+ a 4 .
a n ( x )=6 a 1 x+2 a 2 =0,
x= ( 2 a 2 ) ( 6 a 1 ) .
MT F total =MT F optics ·MT F defocus ·MT F detector ·MT F  image_motion ,
MT F optics =MT F diffraction ·MT F optical_system ,
MT F diffraction = 2 π { arccos[ ( f x 2 + f y 2 ) D/λF ] ( f x 2 + f y 2 ) D/λF [ 1 f x 2 + f y 2 (D/λF) 2 ] },
MT F optical_system =MT F design ·MT F manufacture ·MT F aberrations =exp( α x 2 f x 2 + α y 2 f y 2 ),
MT F defocus = 2J( πΔ N ( f x 2 + f y 2 ) 1/2 [ 1λN ] ( f x 2 + f y 2 ) 1/2 ) πΔ N ( f x 2 + f y 2 ) 1/2 [ 1λN ] ( f x 2 + f y 2 ) 1/2 ,
MT F detector =sin( π f x f sx )×sin( π f y f sy ),
MT F motion =sin( π f y f sy ) ,
i(x,y)=l(x,y)h(x,y),
min α x , α y ,Δ 1 2 ES F actual ES F model F 2 .
G ¯ = 1 M×N i=1 M j N [ f(i,j)f(i+1,j) ] 2 + [ f(i,j)f(i,j+1) ] 2 2 ,
μ= 1 M×N i=1 M j N f(i,j) .
g(i,j)= s x (i,j) 2 + s y (i,j) 2 ,

Metrics