Abstract

The emission from a laser-induced plasma in ambient air, generated by a high power femtosecond laser, was utilized as pulsed incoherent broadband light source in the center of a quasi-confocal high finesse cavity. The time dependent spectra of the light leaking from the cavity was compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses of the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S1 ← S0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air as well as the strongly forbidden γ-band in molecular oxygen: b1Σg+(ν'=2)X3Σg(ν''=0).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evolution of uranium monoxide in femtosecond laser-induced uranium plasmas

Kyle C. Hartig, Sivanandan S. Harilal, Mark C. Phillips, Brian E. Brumfield, and Igor Jovanovic
Opt. Express 25(10) 11477-11490 (2017)

Comparison of laser-induced breakdown spectra of organic compounds with irradiation at 1.5 and 1.064 μm

Diane M. Wong and Paul J. Dagdigian
Appl. Opt. 47(31) G149-G157 (2008)

Identification of atomic lines and molecular bands of benzene and carbon disulfide liquids by using LIBS

S. J. Mousavi, M. Hemati Farsani, S. M. R. Darbani, N. Asadorian, M. Soltanolkotabi, and A. Eslami Majd
Appl. Opt. 54(7) 1713-1720 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
    [Crossref]
  2. A. A. Ruth, S. Dixneuf, and R. Raghunandan, “Broadband cavity-enhanced absorption spectroscopy with incoherent light,” in Springer Series in Optical Sciences(2014), pp. 485–517.
  3. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).
  4. J. Orphal and A. A. Ruth, “High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source,” Opt. Express 16(23), 19232–19243 (2008).
    [Crossref] [PubMed]
  5. A. A. Ruth and K. T. Lynch, “Incoherent broadband cavity-enhanced total internal reflection spectroscopy of surface-adsorbed metallo-porphyrins,” Phys. Chem. Chem. Phys. 10(47), 7098–7108 (2008).
    [Crossref] [PubMed]
  6. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B-Lasers Opt. 69(3), 171–202 (1999).
    [Crossref]
  7. C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Energy absorption and propagation in laser-created sparks,” Appl. Spectrosc. 58(6), 719–726 (2004).
    [Crossref] [PubMed]
  8. A. Borghese and S. S. Merola, “Time-resolved spectral and spatial description of laser-induced breakdown in air as a pulsed, bright, and broadband ultraviolet-visible light source,” Appl. Opt. 37(18), 3977–3983 (1998).
    [Crossref] [PubMed]
  9. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  10. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
    [Crossref] [PubMed]
  11. J. Stricker and J. G. Parker, “Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser-radiation at 1.064 mm,” J. Appl. Phys. 53(2), 851–855 (1982).
    [Crossref]
  12. R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 mm,” J. Appl. Phys. 70(5), 2890–2892 (1991).
    [Crossref]
  13. J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Time-resolved optical emission spectroscopy of laser-produced air plasma,” J. Appl. Phys. 107(8), 083306 (2010).
    [Crossref]
  14. V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectroc. Acta Pt. B-Atom. Spectr. 59, 327–333 (2004).
  15. A. Walsh, D. F. Zhao, and H. Linnartz, “Cavity enhanced plasma self-absorption spectroscopy,” Appl. Phys. Lett. 101(9), 091111 (2012).
    [Crossref]
  16. A. J. Walsh, D. F. Zhao, and H. Linnartz, “Note: Cavity enhanced self-absorption spectroscopy: A new diagnostic tool for light emitting matter,” Rev. Sci. Instrum. 84(2), 026108 (2013).
    [Crossref] [PubMed]
  17. K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queisser, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity Ring-Down Absorption Spectrography based on filament-generated supercontinuum light,” Opt. Express 17(5), 3673–3678 (2009).
    [PubMed]
  18. G. Schmidl, W. Paa, W. Triebel, S. Schippel, and H. Heyer, “Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source,” Appl. Opt. 48(35), 6754–6759 (2009).
    [Crossref] [PubMed]
  19. P. S. Johnston and K. K. Lehmann, “Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source,” Opt. Express 16(19), 15013–15023 (2008).
    [Crossref] [PubMed]
  20. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008).
    [Crossref] [PubMed]
  21. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards Supercontinuum Cavity Ring-Down Spectroscopy,” Appl. Phys. B-Lasers Opt. 94(3), 369–373 (2009).
    [Crossref]
  22. R. S. Watt, T. Laurila, C. F. Kaminski, and J. Hult, “Cavity Enhanced Spectroscopy of High-Temperature H2O in the Near-Infrared Using a Supercontinuum Light Source,” Appl. Spectrosc. 63(12), 1389–1395 (2009).
    [Crossref] [PubMed]
  23. D. M. O’Leary, A. A. Ruth, S. Dixneuf, J. Orphal, and R. Varma, “The near infrared cavity-enhanced absorption spectrum of methyl cyanide,” J. Quant. Spectrosc. Radiat. Transf. 113(11), 1138–1147 (2012).
    [Crossref]
  24. R. Raghunandan, A. Perrin, A. A. Ruth, and J. Orphal, “First analysis of the 2v(1)+3v(3) band of NO2 at 7192.159 cm(−1),” J. Mol. Spectrosc. 297, 4–10 (2014).
    [Crossref]
  25. A. Dragonmir, J. G. McInerney, and D. N. Nikogosyan, “Femtosecond measurements of two-photon absorption coefficients at lambda = 264 nm in glasses, crystals, and liquids,” Appl. Opt. 41(21), 4365–4376 (2002).
    [PubMed]
  26. A. Dragornir, J. G. McInerney, D. N. Nikogosyan, and A. A. Ruth, “Two-photon absorption coefficients of several liquids at 264 nm,” IEEE J. Quantum Electron. 38(1), 31–36 (2002).
    [Crossref]
  27. A. Umbrasas, J. C. Diels, J. Jacob, G. Valiulis, and A. Piskarskas, “Generation of femtosecond pulses through second-harmonic compression of the output of a Nd:YAG laser,” Opt. Lett. 20(21), 2228–2230 (1995).
    [Crossref] [PubMed]
  28. Y. R. A. Kramida, J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (ver. 5.1),” in http://physics.nist.gov/asd (National Institute of Standards and Technology, Gaithersburg, MD, USA, 2013).
  29. G. R. Hunt and I. G. Ross, “Spectrum of azulene,” J. Mol. Spectrosc. 9, 50–78 (1962).
    [Crossref]
  30. D. Huppert and J. Jortner, “Laser excited emission spectroscopy of azulene in the gas phase,” J. Chem. Phys. 56(10), 4826 (1972).
    [Crossref]
  31. S. Hassoon, D. L. Snavely, and I. Oref, “2-photon photodissociation of gaseous azulene at 325 nm,” J. Chem. Phys. 97(12), 9081–9085 (1992).
    [Crossref]
  32. S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
    [Crossref]
  33. A. A. Ruth, E.-K. Kim, and A. Hese, “The S0→S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1, 5121–5128 (1999).
    [Crossref]
  34. A. A. Ruth, “Hochauflösende optische Absorptionsspektroskopie: Cavity-Ring-Down Spektroskopie,” Physik. Blätter 55, 47–49 (1999).
  35. P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1(2), 423–534 (1972).
    [Crossref]

2014 (1)

R. Raghunandan, A. Perrin, A. A. Ruth, and J. Orphal, “First analysis of the 2v(1)+3v(3) band of NO2 at 7192.159 cm(−1),” J. Mol. Spectrosc. 297, 4–10 (2014).
[Crossref]

2013 (1)

A. J. Walsh, D. F. Zhao, and H. Linnartz, “Note: Cavity enhanced self-absorption spectroscopy: A new diagnostic tool for light emitting matter,” Rev. Sci. Instrum. 84(2), 026108 (2013).
[Crossref] [PubMed]

2012 (3)

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

A. Walsh, D. F. Zhao, and H. Linnartz, “Cavity enhanced plasma self-absorption spectroscopy,” Appl. Phys. Lett. 101(9), 091111 (2012).
[Crossref]

D. M. O’Leary, A. A. Ruth, S. Dixneuf, J. Orphal, and R. Varma, “The near infrared cavity-enhanced absorption spectrum of methyl cyanide,” J. Quant. Spectrosc. Radiat. Transf. 113(11), 1138–1147 (2012).
[Crossref]

2010 (2)

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Time-resolved optical emission spectroscopy of laser-produced air plasma,” J. Appl. Phys. 107(8), 083306 (2010).
[Crossref]

2009 (4)

2008 (4)

2005 (1)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).

2004 (2)

C. V. Bindhu, S. S. Harilal, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Energy absorption and propagation in laser-created sparks,” Appl. Spectrosc. 58(6), 719–726 (2004).
[Crossref] [PubMed]

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectroc. Acta Pt. B-Atom. Spectr. 59, 327–333 (2004).

2003 (2)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
[Crossref]

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

2002 (2)

A. Dragonmir, J. G. McInerney, and D. N. Nikogosyan, “Femtosecond measurements of two-photon absorption coefficients at lambda = 264 nm in glasses, crystals, and liquids,” Appl. Opt. 41(21), 4365–4376 (2002).
[PubMed]

A. Dragornir, J. G. McInerney, D. N. Nikogosyan, and A. A. Ruth, “Two-photon absorption coefficients of several liquids at 264 nm,” IEEE J. Quantum Electron. 38(1), 31–36 (2002).
[Crossref]

1999 (3)

A. A. Ruth, E.-K. Kim, and A. Hese, “The S0→S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1, 5121–5128 (1999).
[Crossref]

A. A. Ruth, “Hochauflösende optische Absorptionsspektroskopie: Cavity-Ring-Down Spektroskopie,” Physik. Blätter 55, 47–49 (1999).

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B-Lasers Opt. 69(3), 171–202 (1999).
[Crossref]

1998 (1)

1995 (1)

1992 (1)

S. Hassoon, D. L. Snavely, and I. Oref, “2-photon photodissociation of gaseous azulene at 325 nm,” J. Chem. Phys. 97(12), 9081–9085 (1992).
[Crossref]

1991 (1)

R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 mm,” J. Appl. Phys. 70(5), 2890–2892 (1991).
[Crossref]

1982 (1)

J. Stricker and J. G. Parker, “Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser-radiation at 1.064 mm,” J. Appl. Phys. 53(2), 851–855 (1982).
[Crossref]

1972 (2)

D. Huppert and J. Jortner, “Laser excited emission spectroscopy of azulene in the gas phase,” J. Chem. Phys. 56(10), 4826 (1972).
[Crossref]

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1(2), 423–534 (1972).
[Crossref]

1962 (1)

G. R. Hunt and I. G. Ross, “Spectrum of azulene,” J. Mol. Spectrosc. 9, 50–78 (1962).
[Crossref]

Baev, V. M.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B-Lasers Opt. 69(3), 171–202 (1999).
[Crossref]

Bindhu, C. V.

Borghese, A.

Camacho, J. J.

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Time-resolved optical emission spectroscopy of laser-produced air plasma,” J. Appl. Phys. 107(8), 083306 (2010).
[Crossref]

Carranza, J. E.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectroc. Acta Pt. B-Atom. Spectr. 59, 327–333 (2004).

Czyzewski, A.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards Supercontinuum Cavity Ring-Down Spectroscopy,” Appl. Phys. B-Lasers Opt. 94(3), 369–373 (2009).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queisser, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity Ring-Down Absorption Spectrography based on filament-generated supercontinuum light,” Opt. Express 17(5), 3673–3678 (2009).
[PubMed]

Diaz, L.

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Time-resolved optical emission spectroscopy of laser-produced air plasma,” J. Appl. Phys. 107(8), 083306 (2010).
[Crossref]

Diels, J. C.

Dixneuf, S.

D. M. O’Leary, A. A. Ruth, S. Dixneuf, J. Orphal, and R. Varma, “The near infrared cavity-enhanced absorption spectrum of methyl cyanide,” J. Quant. Spectrosc. Radiat. Transf. 113(11), 1138–1147 (2012).
[Crossref]

Dragonmir, A.

Dragornir, A.

A. Dragornir, J. G. McInerney, D. N. Nikogosyan, and A. A. Ruth, “Two-photon absorption coefficients of several liquids at 264 nm,” IEEE J. Quantum Electron. 38(1), 31–36 (2002).
[Crossref]

E.-K. Kim,

A. A. Ruth, E.-K. Kim, and A. Hese, “The S0→S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1, 5121–5128 (1999).
[Crossref]

Fechner, M.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards Supercontinuum Cavity Ring-Down Spectroscopy,” Appl. Phys. B-Lasers Opt. 94(3), 369–373 (2009).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queisser, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity Ring-Down Absorption Spectrography based on filament-generated supercontinuum light,” Opt. Express 17(5), 3673–3678 (2009).
[PubMed]

Fiedler, S. E.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
[Crossref]

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

Gaeris, A. C.

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectroc. Acta Pt. B-Atom. Spectr. 59, 327–333 (2004).

Harilal, S. S.

Hassoon, S.

S. Hassoon, D. L. Snavely, and I. Oref, “2-photon photodissociation of gaseous azulene at 325 nm,” J. Chem. Phys. 97(12), 9081–9085 (1992).
[Crossref]

Hese, A.

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
[Crossref]

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

A. A. Ruth, E.-K. Kim, and A. Hese, “The S0→S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1, 5121–5128 (1999).
[Crossref]

Heyer, H.

Hoheisel, G.

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

Hohreiter, V.

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectroc. Acta Pt. B-Atom. Spectr. 59, 327–333 (2004).

Hult, J.

Hunt, G. R.

G. R. Hunt and I. G. Ross, “Spectrum of azulene,” J. Mol. Spectrosc. 9, 50–78 (1962).
[Crossref]

Huppert, D.

D. Huppert and J. Jortner, “Laser excited emission spectroscopy of azulene in the gas phase,” J. Chem. Phys. 56(10), 4826 (1972).
[Crossref]

Jacob, J.

Johnston, P. S.

Jones, R. L.

Jortner, J.

D. Huppert and J. Jortner, “Laser excited emission spectroscopy of azulene in the gas phase,” J. Chem. Phys. 56(10), 4826 (1972).
[Crossref]

Juan, L. J.

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Time-resolved optical emission spectroscopy of laser-produced air plasma,” J. Appl. Phys. 107(8), 083306 (2010).
[Crossref]

Kaminski, C. F.

Krupenie, P. H.

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1(2), 423–534 (1972).
[Crossref]

Langridge, J. M.

Latz, T.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B-Lasers Opt. 69(3), 171–202 (1999).
[Crossref]

Laurila, T.

Lehmann, K. K.

Linnartz, H.

A. J. Walsh, D. F. Zhao, and H. Linnartz, “Note: Cavity enhanced self-absorption spectroscopy: A new diagnostic tool for light emitting matter,” Rev. Sci. Instrum. 84(2), 026108 (2013).
[Crossref] [PubMed]

A. Walsh, D. F. Zhao, and H. Linnartz, “Cavity enhanced plasma self-absorption spectroscopy,” Appl. Phys. Lett. 101(9), 091111 (2012).
[Crossref]

Lynch, K. T.

A. A. Ruth and K. T. Lynch, “Incoherent broadband cavity-enhanced total internal reflection spectroscopy of surface-adsorbed metallo-porphyrins,” Phys. Chem. Chem. Phys. 10(47), 7098–7108 (2008).
[Crossref] [PubMed]

McInerney, J. G.

A. Dragonmir, J. G. McInerney, and D. N. Nikogosyan, “Femtosecond measurements of two-photon absorption coefficients at lambda = 264 nm in glasses, crystals, and liquids,” Appl. Opt. 41(21), 4365–4376 (2002).
[PubMed]

A. Dragornir, J. G. McInerney, D. N. Nikogosyan, and A. A. Ruth, “Two-photon absorption coefficients of several liquids at 264 nm,” IEEE J. Quantum Electron. 38(1), 31–36 (2002).
[Crossref]

Merola, S. S.

Najmabadi, F.

Nikogosyan, D. N.

A. Dragonmir, J. G. McInerney, and D. N. Nikogosyan, “Femtosecond measurements of two-photon absorption coefficients at lambda = 264 nm in glasses, crystals, and liquids,” Appl. Opt. 41(21), 4365–4376 (2002).
[PubMed]

A. Dragornir, J. G. McInerney, D. N. Nikogosyan, and A. A. Ruth, “Two-photon absorption coefficients of several liquids at 264 nm,” IEEE J. Quantum Electron. 38(1), 31–36 (2002).
[Crossref]

O’Leary, D. M.

D. M. O’Leary, A. A. Ruth, S. Dixneuf, J. Orphal, and R. Varma, “The near infrared cavity-enhanced absorption spectrum of methyl cyanide,” J. Quant. Spectrosc. Radiat. Transf. 113(11), 1138–1147 (2012).
[Crossref]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields,” Appl. Spectrosc. 66(4), 347–419 (2012).
[Crossref] [PubMed]

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Oref, I.

S. Hassoon, D. L. Snavely, and I. Oref, “2-photon photodissociation of gaseous azulene at 325 nm,” J. Chem. Phys. 97(12), 9081–9085 (1992).
[Crossref]

Orphal, J.

R. Raghunandan, A. Perrin, A. A. Ruth, and J. Orphal, “First analysis of the 2v(1)+3v(3) band of NO2 at 7192.159 cm(−1),” J. Mol. Spectrosc. 297, 4–10 (2014).
[Crossref]

D. M. O’Leary, A. A. Ruth, S. Dixneuf, J. Orphal, and R. Varma, “The near infrared cavity-enhanced absorption spectrum of methyl cyanide,” J. Quant. Spectrosc. Radiat. Transf. 113(11), 1138–1147 (2012).
[Crossref]

J. Orphal and A. A. Ruth, “High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source,” Opt. Express 16(23), 19232–19243 (2008).
[Crossref] [PubMed]

Paa, W.

Parker, J. G.

J. Stricker and J. G. Parker, “Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser-radiation at 1.064 mm,” J. Appl. Phys. 53(2), 851–855 (1982).
[Crossref]

Perrin, A.

R. Raghunandan, A. Perrin, A. A. Ruth, and J. Orphal, “First analysis of the 2v(1)+3v(3) band of NO2 at 7192.159 cm(−1),” J. Mol. Spectrosc. 297, 4–10 (2014).
[Crossref]

Piskarskas, A.

Poyato, J. M. L.

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Time-resolved optical emission spectroscopy of laser-produced air plasma,” J. Appl. Phys. 107(8), 083306 (2010).
[Crossref]

Queißer, M.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards Supercontinuum Cavity Ring-Down Spectroscopy,” Appl. Phys. B-Lasers Opt. 94(3), 369–373 (2009).
[Crossref]

Queisser, M.

Raghunandan, R.

R. Raghunandan, A. Perrin, A. A. Ruth, and J. Orphal, “First analysis of the 2v(1)+3v(3) band of NO2 at 7192.159 cm(−1),” J. Mol. Spectrosc. 297, 4–10 (2014).
[Crossref]

Rohwetter, P.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards Supercontinuum Cavity Ring-Down Spectroscopy,” Appl. Phys. B-Lasers Opt. 94(3), 369–373 (2009).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queisser, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity Ring-Down Absorption Spectrography based on filament-generated supercontinuum light,” Opt. Express 17(5), 3673–3678 (2009).
[PubMed]

Ross, I. G.

G. R. Hunt and I. G. Ross, “Spectrum of azulene,” J. Mol. Spectrosc. 9, 50–78 (1962).
[Crossref]

Ruth, A. A.

R. Raghunandan, A. Perrin, A. A. Ruth, and J. Orphal, “First analysis of the 2v(1)+3v(3) band of NO2 at 7192.159 cm(−1),” J. Mol. Spectrosc. 297, 4–10 (2014).
[Crossref]

D. M. O’Leary, A. A. Ruth, S. Dixneuf, J. Orphal, and R. Varma, “The near infrared cavity-enhanced absorption spectrum of methyl cyanide,” J. Quant. Spectrosc. Radiat. Transf. 113(11), 1138–1147 (2012).
[Crossref]

A. A. Ruth and K. T. Lynch, “Incoherent broadband cavity-enhanced total internal reflection spectroscopy of surface-adsorbed metallo-porphyrins,” Phys. Chem. Chem. Phys. 10(47), 7098–7108 (2008).
[Crossref] [PubMed]

J. Orphal and A. A. Ruth, “High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source,” Opt. Express 16(23), 19232–19243 (2008).
[Crossref] [PubMed]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
[Crossref]

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

A. Dragornir, J. G. McInerney, D. N. Nikogosyan, and A. A. Ruth, “Two-photon absorption coefficients of several liquids at 264 nm,” IEEE J. Quantum Electron. 38(1), 31–36 (2002).
[Crossref]

A. A. Ruth, E.-K. Kim, and A. Hese, “The S0→S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1, 5121–5128 (1999).
[Crossref]

A. A. Ruth, “Hochauflösende optische Absorptionsspektroskopie: Cavity-Ring-Down Spektroskopie,” Physik. Blätter 55, 47–49 (1999).

Santos, M.

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Time-resolved optical emission spectroscopy of laser-produced air plasma,” J. Appl. Phys. 107(8), 083306 (2010).
[Crossref]

Schippel, S.

Schmidl, G.

Snavely, D. L.

S. Hassoon, D. L. Snavely, and I. Oref, “2-photon photodissociation of gaseous azulene at 325 nm,” J. Chem. Phys. 97(12), 9081–9085 (1992).
[Crossref]

Stacewicz, T.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards Supercontinuum Cavity Ring-Down Spectroscopy,” Appl. Phys. B-Lasers Opt. 94(3), 369–373 (2009).
[Crossref]

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queisser, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity Ring-Down Absorption Spectrography based on filament-generated supercontinuum light,” Opt. Express 17(5), 3673–3678 (2009).
[PubMed]

Stelmaszczyk, K.

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queisser, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity Ring-Down Absorption Spectrography based on filament-generated supercontinuum light,” Opt. Express 17(5), 3673–3678 (2009).
[PubMed]

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards Supercontinuum Cavity Ring-Down Spectroscopy,” Appl. Phys. B-Lasers Opt. 94(3), 369–373 (2009).
[Crossref]

Stricker, J.

J. Stricker and J. G. Parker, “Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser-radiation at 1.064 mm,” J. Appl. Phys. 53(2), 851–855 (1982).
[Crossref]

Tambay, R.

R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 mm,” J. Appl. Phys. 70(5), 2890–2892 (1991).
[Crossref]

Thareja, R. K.

R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 mm,” J. Appl. Phys. 70(5), 2890–2892 (1991).
[Crossref]

Tillack, M. S.

Toschek, P. E.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B-Lasers Opt. 69(3), 171–202 (1999).
[Crossref]

Triebel, W.

Umbrasas, A.

Valiulis, G.

Varma, R.

D. M. O’Leary, A. A. Ruth, S. Dixneuf, J. Orphal, and R. Varma, “The near infrared cavity-enhanced absorption spectrum of methyl cyanide,” J. Quant. Spectrosc. Radiat. Transf. 113(11), 1138–1147 (2012).
[Crossref]

Walsh, A.

A. Walsh, D. F. Zhao, and H. Linnartz, “Cavity enhanced plasma self-absorption spectroscopy,” Appl. Phys. Lett. 101(9), 091111 (2012).
[Crossref]

Walsh, A. J.

A. J. Walsh, D. F. Zhao, and H. Linnartz, “Note: Cavity enhanced self-absorption spectroscopy: A new diagnostic tool for light emitting matter,” Rev. Sci. Instrum. 84(2), 026108 (2013).
[Crossref] [PubMed]

Watt, R. S.

Wöste, L.

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queisser, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity Ring-Down Absorption Spectrography based on filament-generated supercontinuum light,” Opt. Express 17(5), 3673–3678 (2009).
[PubMed]

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards Supercontinuum Cavity Ring-Down Spectroscopy,” Appl. Phys. B-Lasers Opt. 94(3), 369–373 (2009).
[Crossref]

Zhao, D. F.

A. J. Walsh, D. F. Zhao, and H. Linnartz, “Note: Cavity enhanced self-absorption spectroscopy: A new diagnostic tool for light emitting matter,” Rev. Sci. Instrum. 84(2), 026108 (2013).
[Crossref] [PubMed]

A. Walsh, D. F. Zhao, and H. Linnartz, “Cavity enhanced plasma self-absorption spectroscopy,” Appl. Phys. Lett. 101(9), 091111 (2012).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B-Lasers Opt. (2)

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards Supercontinuum Cavity Ring-Down Spectroscopy,” Appl. Phys. B-Lasers Opt. 94(3), 369–373 (2009).
[Crossref]

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B-Lasers Opt. 69(3), 171–202 (1999).
[Crossref]

Appl. Phys. Lett. (1)

A. Walsh, D. F. Zhao, and H. Linnartz, “Cavity enhanced plasma self-absorption spectroscopy,” Appl. Phys. Lett. 101(9), 091111 (2012).
[Crossref]

Appl. Spectrosc. (4)

Chem. Phys. Lett. (2)

S. E. Fiedler, G. Hoheisel, A. A. Ruth, and A. Hese, “Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet,” Chem. Phys. Lett. 382(3-4), 447–453 (2003).
[Crossref]

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy,” Chem. Phys. Lett. 371(3-4), 284–294 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Dragornir, J. G. McInerney, D. N. Nikogosyan, and A. A. Ruth, “Two-photon absorption coefficients of several liquids at 264 nm,” IEEE J. Quantum Electron. 38(1), 31–36 (2002).
[Crossref]

J. Appl. Phys. (3)

J. Stricker and J. G. Parker, “Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser-radiation at 1.064 mm,” J. Appl. Phys. 53(2), 851–855 (1982).
[Crossref]

R. Tambay and R. K. Thareja, “Laser-induced breakdown studies of laboratory air at 0.266, 0.355, 0.532, and 1.06 mm,” J. Appl. Phys. 70(5), 2890–2892 (1991).
[Crossref]

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Time-resolved optical emission spectroscopy of laser-produced air plasma,” J. Appl. Phys. 107(8), 083306 (2010).
[Crossref]

J. Chem. Phys. (2)

D. Huppert and J. Jortner, “Laser excited emission spectroscopy of azulene in the gas phase,” J. Chem. Phys. 56(10), 4826 (1972).
[Crossref]

S. Hassoon, D. L. Snavely, and I. Oref, “2-photon photodissociation of gaseous azulene at 325 nm,” J. Chem. Phys. 97(12), 9081–9085 (1992).
[Crossref]

J. Mol. Spectrosc. (2)

R. Raghunandan, A. Perrin, A. A. Ruth, and J. Orphal, “First analysis of the 2v(1)+3v(3) band of NO2 at 7192.159 cm(−1),” J. Mol. Spectrosc. 297, 4–10 (2014).
[Crossref]

G. R. Hunt and I. G. Ross, “Spectrum of azulene,” J. Mol. Spectrosc. 9, 50–78 (1962).
[Crossref]

J. Phys. Chem. Ref. Data (1)

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1(2), 423–534 (1972).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

D. M. O’Leary, A. A. Ruth, S. Dixneuf, J. Orphal, and R. Varma, “The near infrared cavity-enhanced absorption spectrum of methyl cyanide,” J. Quant. Spectrosc. Radiat. Transf. 113(11), 1138–1147 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (2)

A. A. Ruth, E.-K. Kim, and A. Hese, “The S0→S1 cavity ring-down absorption spectrum of jet-cooled azulene: dependence of internal conversion on the excess energy,” Phys. Chem. Chem. Phys. 1, 5121–5128 (1999).
[Crossref]

A. A. Ruth and K. T. Lynch, “Incoherent broadband cavity-enhanced total internal reflection spectroscopy of surface-adsorbed metallo-porphyrins,” Phys. Chem. Chem. Phys. 10(47), 7098–7108 (2008).
[Crossref] [PubMed]

Physik. Blätter (1)

A. A. Ruth, “Hochauflösende optische Absorptionsspektroskopie: Cavity-Ring-Down Spektroskopie,” Physik. Blätter 55, 47–49 (1999).

Rev. Sci. Instrum. (2)

S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005).

A. J. Walsh, D. F. Zhao, and H. Linnartz, “Note: Cavity enhanced self-absorption spectroscopy: A new diagnostic tool for light emitting matter,” Rev. Sci. Instrum. 84(2), 026108 (2013).
[Crossref] [PubMed]

Spectroc. Acta Pt. B-Atom. Spectr. (1)

V. Hohreiter, J. E. Carranza, and D. W. Hahn, “Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy,” Spectroc. Acta Pt. B-Atom. Spectr. 59, 327–333 (2004).

Other (2)

A. A. Ruth, S. Dixneuf, and R. Raghunandan, “Broadband cavity-enhanced absorption spectroscopy with incoherent light,” in Springer Series in Optical Sciences(2014), pp. 485–517.

Y. R. A. Kramida, J. Reader, and NIST ASD Team, “NIST Atomic Spectra Database (ver. 5.1),” in http://physics.nist.gov/asd (National Institute of Standards and Technology, Gaithersburg, MD, USA, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the experimental setup. The purge gas used in the cavity experiments was either high grade N2 or O2. The volume between the HR mirrors was open to ambient lab air. In LIBS experiments without the cavity both HR mirrors were removed and HR mirror 2 was replaced by a second achromatic lens of an appropriate focal length. Additionally a notch filter (center at 532 nm) was used in front of the fiber bundle as shown in the figure.
Fig. 2
Fig. 2 (a) Relative intensity of the plasma emission as a function of wavelength for different times after the excitation. The dip at (530 ± 8) nm is due to a notch filter to eliminated laser stray light. Black vertical arrows correspond to emission features from NII, red ones to emissions from atomic OI. Emission from OII and OI are also possible in the region indicated by the parenthesis >650 nm. (b) Characteristic exponential decay time, τ, as a function of wavelength. The region of the notch filter exhibits strongly increased noise. Insert: typical mono-exponential fit referring to the intensity decay at 614.7 nm. Vertical dashed line: HR range of mirrors in the experiment with a confocal cavity.
Fig. 3
Fig. 3 (a) 3D contour plot of the intensity measured outside the cavity as a function of time and wavelength. (b) Spectrum in the second intensity maximum in a time window between 3.5 and 3.8 μs (horizontal blue dashed line in panel (a)). (c) Emission time dependence at 646 nm (vertical red dashed line in panel (a). Two maxima are observed at 3.6 and 0.5 μs with a minimum in between at ~1.9 μs. (d) Lifetime (τ; right axis) and corresponding value of (1 – Reff, left axis) resulting from mono-exponential fit between 3.6 and 12 μs.
Fig. 4
Fig. 4 (a) Light intensity leaking from the cavity in ambient air (black trace) and with azulene in ambient air (red trace). Regions where oxygen and nitrogen recombination emission may occur are indicated. The spectra are not corrected for the spectral dependence of the detector and imaging optics employed. (b) Red trace: Vibronic contour bands of the fractional S1←S0 absorption of azulene [(I0/I) – 1], based on the measurement in upper panel (a). Black trace: Cavity ring-down absorption spectrum of jet-cooled azulene from Ref [33]; shifted and scaled for comparison. The extinction coefficient is based on an assumption of R being 0.9985 and azulene being present across the entire cavity.
Fig. 5
Fig. 5 Absorption spectra of the b 1 Σ g + (ν'=2) X 3 Σ g (ν''=0) band in molecular oxygen. Top (red spectrum): Fractional absorption measured with the present approach, by purging the cavity with oxygen into ambient lab air. I0 was taken as the linearly interpolated background between 627 and 634 nm of the intensity measurement. Grating 1800 lines/mm. Bottom (black spectrum): Cavity ring-down absorption spectrum (1145 mbar of O2; cavity length 145 cm) for comparison.

Metrics