Abstract

A novel plasmonic metamaterial consisting of the solid (bar) and the inverse (slot) compound metallic nanostructure for electromagnetically induced absorption (EIA) is proposed in this paper, which is demonstrated to achieve an ultra-narrow absorption peak with the linewidth less than 8 nm and the absorptivity exceeding 97% at optical frequencies. This is attributed to the plasmonic EIA resonance arising from the efficient coupling between the magnetic response of the slot (dark mode) and the electric resonance of the bar (bright mode). To the best of our knowledge, this is the first time that the plasmonic EIA is used to realize the narrow-band perfect absorbers. The underlying physics are revealed by applying the two-coupled-oscillator model. The near-perfect-absorption resonance also causes an enhancement of about 50 times in H-field and about 130 times in E-field within the slots. Such absorber possesses potential for applications in filter, thermal emitter, surface enhanced Raman scattering, sensing and nonlinear optics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis

Richard Taubert, Mario Hentschel, and Harald Giessen
J. Opt. Soc. Am. B 30(12) 3123-3134 (2013)

Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency

Junqiao Wang, Chunzhen Fan, Pei Ding, Jinna He, Yongguang Cheng, Weiqin Hu, Genwang Cai, Erjun Liang, and Qianzhong Xue
Opt. Express 20(14) 14871-14878 (2012)

Metamaterial perfect absorber based on artificial dielectric “atoms”

Xiaoming Liu, Ke Bi, Bo Li, Qian Zhao, and Ji Zhou
Opt. Express 24(18) 20454-20460 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  3. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–521 (2011).
    [Crossref] [PubMed]
  4. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  5. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
    [Crossref] [PubMed]
  6. P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
    [Crossref]
  7. Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
    [Crossref] [PubMed]
  8. L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
    [PubMed]
  9. A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
    [Crossref]
  10. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
    [Crossref] [PubMed]
  11. R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
    [Crossref]
  12. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref] [PubMed]
  13. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
    [Crossref] [PubMed]
  14. W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
    [Crossref] [PubMed]
  15. T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
    [Crossref]
  16. M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
    [Crossref] [PubMed]
  17. H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
    [Crossref]
  18. Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36(9), 1542–1544 (2011).
    [Crossref] [PubMed]
  19. M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
    [Crossref] [PubMed]
  20. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
    [Crossref] [PubMed]
  21. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  22. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  23. X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
    [PubMed]
  24. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  25. M. L. Wan, S. Q. Yuan, K. J. Dai, Y. L. Song, F. Q. Zhou, and J. N. He, “Plasmon-induced absorption in stacked metamaterials based on phase retardation,” Chin. Phys. B 23(10), 107808 (2014).
    [Crossref]
  26. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
    [Crossref] [PubMed]
  27. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
    [Crossref]
  29. M. Albooyeh and C. R. Simovski, “Huge local field enhancement in perfect plasmonic absorbers,” Opt. Express 20(20), 21888–21895 (2012).
    [Crossref] [PubMed]
  30. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
    [Crossref] [PubMed]
  31. S. Koo, M. S. Kumar, J. Shin, D. S. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett. 103(26), 263901 (2009).
    [Crossref] [PubMed]
  32. H. Giessen and R. Vogelgesang, “Physics. glimpsing the weak magnetic field of light,” Science 326(5952), 529–530 (2009).
    [Crossref] [PubMed]
  33. S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
    [Crossref]
  34. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
    [Crossref]
  35. A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
    [Crossref]

2014 (6)

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

M. L. Wan, S. Q. Yuan, K. J. Dai, Y. L. Song, F. Q. Zhou, and J. N. He, “Plasmon-induced absorption in stacked metamaterials based on phase retardation,” Chin. Phys. B 23(10), 107808 (2014).
[Crossref]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[PubMed]

2013 (2)

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
[Crossref]

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

2012 (5)

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

M. Albooyeh and C. R. Simovski, “Huge local field enhancement in perfect plasmonic absorbers,” Opt. Express 20(20), 21888–21895 (2012).
[Crossref] [PubMed]

2011 (5)

Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36(9), 1542–1544 (2011).
[Crossref] [PubMed]

X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[PubMed]

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–521 (2011).
[Crossref] [PubMed]

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

2010 (3)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
[Crossref] [PubMed]

2009 (4)

S. Koo, M. S. Kumar, J. Shin, D. S. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett. 103(26), 263901 (2009).
[Crossref] [PubMed]

H. Giessen and R. Vogelgesang, “Physics. glimpsing the weak magnetic field of light,” Science 326(5952), 529–530 (2009).
[Crossref] [PubMed]

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

2008 (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

2004 (1)

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

2002 (1)

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

2001 (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

1999 (1)

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Akulshin, A. M.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

Albooyeh, M.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–521 (2011).
[Crossref] [PubMed]

K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
[Crossref] [PubMed]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–521 (2011).
[Crossref] [PubMed]

K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010).
[Crossref] [PubMed]

Bagheri, S.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

Baida, F. I.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[Crossref] [PubMed]

Barreiro, S.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

Bechtel, H. A.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–521 (2011).
[Crossref] [PubMed]

Burr, G. W.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[Crossref] [PubMed]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Cai, G.

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Campione, S.

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

Capolino, F.

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

Catrysse, P. B.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

Chen, Y.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Cheng, Y.

Cheong, H. S.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dai, K. J.

M. L. Wan, S. Q. Yuan, K. J. Dai, Y. L. Song, F. Q. Zhou, and J. N. He, “Plasmon-induced absorption in stacked metamaterials based on phase retardation,” Chin. Phys. B 23(10), 107808 (2014).
[Crossref]

Deryckx, K. S.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Ding, P.

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Fan, C.

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Fan, S.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–521 (2011).
[Crossref] [PubMed]

Fischer, U. C.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Garrido Alzar, C. L.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
[Crossref]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

H. Giessen and R. Vogelgesang, “Physics. glimpsing the weak magnetic field of light,” Science 326(5952), 529–530 (2009).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Gray, S. K.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Grosjean, T.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[Crossref] [PubMed]

Guclu, C.

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Guyot-Sionnest, P.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hao, Z. H.

He, J.

He, J. N.

M. L. Wan, S. Q. Yuan, K. J. Dai, Y. L. Song, F. Q. Zhou, and J. N. He, “Plasmon-induced absorption in stacked metamaterials based on phase retardation,” Chin. Phys. B 23(10), 107808 (2014).
[Crossref]

Hentschel, M.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
[Crossref]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hilger, A.

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

Hu, W.

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Jang, W. H.

Jin, X. R.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Kästel, J.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

Kim, D. S.

S. Koo, M. S. Kumar, J. Shin, D. S. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett. 103(26), 263901 (2009).
[Crossref] [PubMed]

Kim, K. W.

Koo, S.

S. Koo, M. S. Kumar, J. Shin, D. S. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett. 103(26), 263901 (2009).
[Crossref] [PubMed]

Koschny, T.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Kreibig, U.

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

Kumar, M. S.

S. Koo, M. S. Kumar, J. Shin, D. S. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett. 103(26), 263901 (2009).
[Crossref] [PubMed]

Lail, B. A.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lederer, F.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Lee, S.

Lee, T. W.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Lee, Y.

Lezama, A.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

Li, Q.

Li, Q. Q.

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Liang, E.

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Liu, M.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Z.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

Martinez, M. A. G.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Meng, L.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Meyrath, T. P.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Mivelle, M.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nussenzveig, P.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Olmon, R. L.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Park, J.

Park, N.

S. Koo, M. S. Kumar, J. Shin, D. S. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett. 103(26), 263901 (2009).
[Crossref] [PubMed]

Pelton, M.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Pinchuk, A.

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

Plessen, G. V.

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

Pryce, I. M.

Qiu, M.

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Ragan, R.

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

Raschke, M. B.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Rhee, J. Y.

Rockstuhl, C.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Ruan, Z.

L. Meng, D. Zhao, Z. Ruan, Q. Li, Y. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schatz, G. C.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Seidel, A.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Shin, J.

S. Koo, M. S. Kumar, J. Shin, D. S. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett. 103(26), 263901 (2009).
[Crossref] [PubMed]

Simovski, C. R.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, Y. L.

M. L. Wan, S. Q. Yuan, K. J. Dai, Y. L. Song, F. Q. Zhou, and J. N. He, “Plasmon-induced absorption in stacked metamaterials based on phase retardation,” Chin. Phys. B 23(10), 107808 (2014).
[Crossref]

Soukoulis, C. M.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Taubert, R.

R. Taubert, M. Hentschel, and H. Giessen, “Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis,” J. Opt. Soc. Am. B 30(12), 3123–3134 (2013).
[Crossref]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Van Duyne, R. P.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

Verslegers, L.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

Vogelgesang, R.

H. Giessen and R. Vogelgesang, “Physics. glimpsing the weak magnetic field of light,” Science 326(5952), 529–530 (2009).
[Crossref] [PubMed]

Wan, M. L.

M. L. Wan, S. Q. Yuan, K. J. Dai, Y. L. Song, F. Q. Zhou, and J. N. He, “Plasmon-induced absorption in stacked metamaterials based on phase retardation,” Chin. Phys. B 23(10), 107808 (2014).
[Crossref]

Wan, W.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Wang, J.

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, Q. Q.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Weiss, T.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Xu, X. G.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Xu, Y.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Xue, Q.

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

Yang, H. U.

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

Yang, Y.

Yang, Z. J.

Yu, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

Yuan, S. Q.

M. L. Wan, S. Q. Yuan, K. J. Dai, Y. L. Song, F. Q. Zhou, and J. N. He, “Plasmon-induced absorption in stacked metamaterials based on phase retardation,” Chin. Phys. B 23(10), 107808 (2014).
[Crossref]

Zentgraf, T.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

Zhang, L.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Zhang, L. H.

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Z. S.

Zhao, D.

Zhao, R.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Zheng, H.

Zheng, W.

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Zhou, F. Q.

M. L. Wan, S. Q. Yuan, K. J. Dai, Y. L. Song, F. Q. Zhou, and J. N. He, “Plasmon-induced absorption in stacked metamaterials based on phase retardation,” Chin. Phys. B 23(10), 107808 (2014).
[Crossref]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

ACS Nano (1)

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

H. U. Yang, R. L. Olmon, K. S. Deryckx, X. G. Xu, H. A. Bechtel, Y. Xu, B. A. Lail, and M. B. Raschke, “Accessing the optical magnetic near-field through Babinet's principle,” ACS Photonics 1(9), 894–899 (2014).
[Crossref]

S. Campione, C. Guclu, R. Ragan, and F. Capolino, “Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles,” ACS Photonics 1(3), 254–260 (2014).
[Crossref]

Am. J. Phys. (1)

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37–41 (2002).
[Crossref]

Appl. Phys. Lett. (1)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Chin. Phys. B (1)

M. L. Wan, S. Q. Yuan, K. J. Dai, Y. L. Song, F. Q. Zhou, and J. N. He, “Plasmon-induced absorption in stacked metamaterials based on phase retardation,” Chin. Phys. B 23(10), 107808 (2014).
[Crossref]

J. Opt. (1)

P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

Nano Lett. (4)

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett. 11(3), 1009–1013 (2011).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nanoscale (1)

W. Wan, W. Zheng, Y. Chen, and Z. Liu, “From Fano-like interference to superscattering with a single metallic nanodisk,” Nanoscale 6(15), 9093–9102 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, “Substrate effect on the optical response of silver nanoparticles,” Nanotechnology 15(12), 1890–1896 (2004).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517–521 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59(6), 4732–4735 (1999).
[Crossref]

Phys. Rev. B (2)

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, “Babinet’s principle for optical frequency metamaterials and nanoantennas,” Phys. Rev. B 76(3), 033407 (2007).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (6)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

S. Koo, M. S. Kumar, J. Shin, D. S. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett. 103(26), 263901 (2009).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108(8), 083902 (2012).
[Crossref] [PubMed]

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter,” Phys. Rev. Lett. 102(10), 107401 (2009).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Science (1)

H. Giessen and R. Vogelgesang, “Physics. glimpsing the weak magnetic field of light,” Science 326(5952), 529–530 (2009).
[Crossref] [PubMed]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Description by Babinet's principle for the electric quadrupole in a resonator (a metal bar) and the magnetic quadrupole in its complement (a slot in a continuous metal film) (b-c) Schematic of the proposed EIA structure with the defined geometrical parameters: L1 × W1 × h1 = 168 × 60 × 30 nm3, and L2 × W2 × h2 = 360 × 40 × 20 nm3. (d) Oblique view of the stacked metamaterial. The periods along X- and Y-axis are 500 nm.

Fig. 2
Fig. 2

Absorption spectra of the bare bar array at normal incidence (black), and the bare slot array at normal (red) and 20°-off normal incidence (blue). Insets: Illustration of excitation ways in X-Z section. The plane wave is polarized along X-axis.

Fig. 3
Fig. 3

Simulated (a) transmittance/reflectance (dashed/solid) and (b) absorbance spectra of the proposed EIA metamaterial for different displacement S. The solid circles in (b) represent the TCO fit results. For comparison, the absorbance spectra of other similar structure by replacing the bottom slot with a long metal bar in dependence on the parameter S' are given in (c). Inset: top view of the structure with the defined S'. To guide the eye, the absorbance spectrum for S = 0 and S' = 0 (light gray lines) is shown in every plot of (b) and (c), respectively.

Fig. 4
Fig. 4

Extracted parameters from TCO model fit in Fig. 3(b) as a function of displacement S.

Fig. 5
Fig. 5

(a) Simulated absorbance spectra (lines) and the TCO fit (circles) for different vertical spacing D (in nm). (b) The extracted phase φ from the TCO model fit as a function of D.

Fig. 6
Fig. 6

Top views of (a) the calculated Ez field in the middle of the metal bar and (b) Hz field in the middle of the slot. Red rows indicate the current density. Side views of (c) |H|- and (e) |E|-field enhancements along the white dashed lines shown in (d, f). Top views of (d) |H|- and (f) |E|- field enhancements along the dashed lines shown in (c, e).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x ¨ 1 (t)+ γ 1 x ˙ 1 (t)+ ω 1 2 x 1 (t)+κexp(iφ) x 2 (t)=gE(t) x ¨ 2 (t)+ γ 2 x ˙ 2 (t)+ ω 2 2 x 2 (t)+κexp(iφ) x 1 (t)=0
A(ω)= i g 2 ω( ω 2 +iω γ 2 ω 2 2 ) ( ω 2 +iω γ 1 ω 1 2 )( ω 2 +iω γ 2 ω 2 2 ) κ 2 exp(i2φ)
A(ω) g 2 ( γ 2 ω 0 2 κ 2 exp(i2φ)+ γ 1 γ 2 ω 0 2 i( ω 2 ω 0 2 ) ω 0 κ 2 exp(i2φ) γ 2 2 ω 0 2 ( κ 2 exp(i2φ)+ γ 1 γ 2 ω 0 2 ) 2 )

Metrics