Abstract

The mechano-luminescence (ML) of phosphors has stirred a great deal of interest for its potential application in inexpensive, non-destructive load sensors. However, the most serious drawback of ML phosphors has been responses that differ according to the loading conditions. This has led to a lack of standardization in realizing smart ML sensor applications. We improved the applicability of ML phosphors to that of a smart, standardized load sensor by detecting ML based on the UV excitation above the threshold power density during the entire loading process. The ML behavior under these conditions was completely different from that of conventional ML behavior with UV excitation turned off. The ML output was clearly represented as a simple linear function of the applied load under conditions that could be either static or dynamic. In addition, neither a ML loss angle nor hysteresis behavior was observed under these ML measurement conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hysteresis compensation of photoluminescence in ZnS:Cu for noncontact shaft torque sensing

Min-Young Cho, Ji-Sik Kim, and Gi-Woo Kim
Appl. Opt. 55(7) 1670-1674 (2016)

Mechanoluminescence of SrAl2O4:Eu2+, Dy3+ under cyclic loading

Kee-Sun Sohn, Woon Bae Park, Suman Timilsina, and Ji Sik Kim
Opt. Lett. 39(6) 1410-1413 (2014)

Lifetime-based measurement of stress during cyclic elastic deformation using mechanoluminescence of SrAl2O4:Eu2+

Satoshi Someya, Keiko Ishii, Tetsuo Munakata, and Masayuki Saeki
Opt. Express 22(18) 21991-21998 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
    [Crossref]
  2. Y. Liu and C.-N. Xu, “Influence of calcining temperature on photoluminescence and triboluminescence of europium-doped strontium aluminate particles prepared by sol−gel process,” J. Phys. Chem. B 107(17), 3991–3995 (2003).
    [Crossref]
  3. C.-N. Xu, H. Yamada, X. Wang, and X.-G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040 (2004).
    [Crossref]
  4. C. Li, Y. Adachi, Y. Imai, K. Nishikubo, and C.-N. Xu, “Processing and properties of SrAl2O4 : Eu nanoparticles prepared via polymer-coated precursor,” J. Electrochem. Soc. 154(11), J362–J364 (2007).
    [Crossref]
  5. J.-C. Zhang, Y.-Z. Long, X. Wang, and C.-N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv. 4(77), 40665–40675 (2014).
    [Crossref]
  6. K.-S. Sohn, S. Y. Seo, Y. N. Kwon, and H. D. Park, “Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu,Dy,Nd),” J. Am. Ceram. Soc. 85(3), 712–714 (2002).
    [Crossref]
  7. J. S. Kim, Y.-N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater. 51(20), 6437–6442 (2003).
    [Crossref]
  8. J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater. 53(16), 4337–4343 (2005).
    [Crossref]
  9. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  10. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. LeMercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
    [Crossref]
  11. F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M.-H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
    [Crossref]
  12. V. K. Chandra, B. P. Chandra, and P. Jha, “Strong luminescence induced by elastic deformation of piezoelectric crystals,” Appl. Phys. Lett. 102(24), 241105 (2013).
    [Crossref]
  13. V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin. 132(3), 858–869 (2012).
    [Crossref]
  14. B. P. Chandra, V. K. Chandra, and P. Jha, “Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials,” Physica B 461, 38–48 (2015).
    [Crossref]
  15. K.-S. Sohn, W. B. Park, S. Timilsina, and J. S. Kim, “Mechanoluminescence of SrAl2O4:Eu2+, Dy3+ under cyclic loading,” Opt. Lett. 39(6), 1410–1413 (2014).
  16. J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
    [Crossref]
  17. J. S. Kim, K. Kibble, Y. N. Kwon, and K.-S. Sohn, “Rate-equation model for the loading-rate-dependent mechanoluminescence of SrAl2O4:Eu2+,Dy3+.,” Opt. Lett. 34(13), 1915–1917 (2009).
    [Crossref] [PubMed]
  18. P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
    [Crossref]
  19. W. L. Medlin, “Decay of phosphorescence in CaCO3, MgCO3, CaMg(CO3)2, and CaS,” Phys. Rev. 122(3), 837–842 (1961).
    [Crossref]
  20. W. L. Medlin, “Decay of phosphorescence from a distribution of trapping levels,” Phys. Rev. 123(2), 502–509 (1961).
    [Crossref]
  21. Ph. Avouris, I. F. Chang, D. Dove, T. N. Morgan, and Y. Thefaine, “Trapping and luminescence mechanisms in manganese-doped zinc silicate phosphors–a tunneling model,” J. Electron. Mater. 10(5), 887–899 (1981).
    [Crossref]
  22. P. Thioulouse, I. F. Chang, and E. A. Giess, “Comparative study of phosphorescence and photostimulated luminescence in zinc silicate phosphors and their description by a tunneling model,” J. Electrochem. Soc. 130(10), 2065–2071 (1983).
    [Crossref]

2015 (1)

B. P. Chandra, V. K. Chandra, and P. Jha, “Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials,” Physica B 461, 38–48 (2015).
[Crossref]

2014 (2)

K.-S. Sohn, W. B. Park, S. Timilsina, and J. S. Kim, “Mechanoluminescence of SrAl2O4:Eu2+, Dy3+ under cyclic loading,” Opt. Lett. 39(6), 1410–1413 (2014).

J.-C. Zhang, Y.-Z. Long, X. Wang, and C.-N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv. 4(77), 40665–40675 (2014).
[Crossref]

2013 (1)

V. K. Chandra, B. P. Chandra, and P. Jha, “Strong luminescence induced by elastic deformation of piezoelectric crystals,” Appl. Phys. Lett. 102(24), 241105 (2013).
[Crossref]

2012 (2)

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin. 132(3), 858–869 (2012).
[Crossref]

J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

2009 (1)

2007 (1)

C. Li, Y. Adachi, Y. Imai, K. Nishikubo, and C.-N. Xu, “Processing and properties of SrAl2O4 : Eu nanoparticles prepared via polymer-coated precursor,” J. Electrochem. Soc. 154(11), J362–J364 (2007).
[Crossref]

2006 (1)

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M.-H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

2005 (3)

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater. 53(16), 4337–4343 (2005).
[Crossref]

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. LeMercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

2004 (1)

C.-N. Xu, H. Yamada, X. Wang, and X.-G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040 (2004).
[Crossref]

2003 (2)

Y. Liu and C.-N. Xu, “Influence of calcining temperature on photoluminescence and triboluminescence of europium-doped strontium aluminate particles prepared by sol−gel process,” J. Phys. Chem. B 107(17), 3991–3995 (2003).
[Crossref]

J. S. Kim, Y.-N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater. 51(20), 6437–6442 (2003).
[Crossref]

2002 (1)

K.-S. Sohn, S. Y. Seo, Y. N. Kwon, and H. D. Park, “Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu,Dy,Nd),” J. Am. Ceram. Soc. 85(3), 712–714 (2002).
[Crossref]

1999 (1)

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1983 (1)

P. Thioulouse, I. F. Chang, and E. A. Giess, “Comparative study of phosphorescence and photostimulated luminescence in zinc silicate phosphors and their description by a tunneling model,” J. Electrochem. Soc. 130(10), 2065–2071 (1983).
[Crossref]

1981 (1)

Ph. Avouris, I. F. Chang, D. Dove, T. N. Morgan, and Y. Thefaine, “Trapping and luminescence mechanisms in manganese-doped zinc silicate phosphors–a tunneling model,” J. Electron. Mater. 10(5), 887–899 (1981).
[Crossref]

1961 (2)

W. L. Medlin, “Decay of phosphorescence in CaCO3, MgCO3, CaMg(CO3)2, and CaS,” Phys. Rev. 122(3), 837–842 (1961).
[Crossref]

W. L. Medlin, “Decay of phosphorescence from a distribution of trapping levels,” Phys. Rev. 123(2), 502–509 (1961).
[Crossref]

Adachi, Y.

C. Li, Y. Adachi, Y. Imai, K. Nishikubo, and C.-N. Xu, “Processing and properties of SrAl2O4 : Eu nanoparticles prepared via polymer-coated precursor,” J. Electrochem. Soc. 154(11), J362–J364 (2007).
[Crossref]

Akiyama, M.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Avouris, Ph.

Ph. Avouris, I. F. Chang, D. Dove, T. N. Morgan, and Y. Thefaine, “Trapping and luminescence mechanisms in manganese-doped zinc silicate phosphors–a tunneling model,” J. Electron. Mater. 10(5), 887–899 (1981).
[Crossref]

Botterman, J.

J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Chandra, B. P.

B. P. Chandra, V. K. Chandra, and P. Jha, “Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials,” Physica B 461, 38–48 (2015).
[Crossref]

V. K. Chandra, B. P. Chandra, and P. Jha, “Strong luminescence induced by elastic deformation of piezoelectric crystals,” Appl. Phys. Lett. 102(24), 241105 (2013).
[Crossref]

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin. 132(3), 858–869 (2012).
[Crossref]

Chandra, V. K.

B. P. Chandra, V. K. Chandra, and P. Jha, “Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials,” Physica B 461, 38–48 (2015).
[Crossref]

V. K. Chandra, B. P. Chandra, and P. Jha, “Strong luminescence induced by elastic deformation of piezoelectric crystals,” Appl. Phys. Lett. 102(24), 241105 (2013).
[Crossref]

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin. 132(3), 858–869 (2012).
[Crossref]

Chang, I. F.

P. Thioulouse, I. F. Chang, and E. A. Giess, “Comparative study of phosphorescence and photostimulated luminescence in zinc silicate phosphors and their description by a tunneling model,” J. Electrochem. Soc. 130(10), 2065–2071 (1983).
[Crossref]

Ph. Avouris, I. F. Chang, D. Dove, T. N. Morgan, and Y. Thefaine, “Trapping and luminescence mechanisms in manganese-doped zinc silicate phosphors–a tunneling model,” J. Electron. Mater. 10(5), 887–899 (1981).
[Crossref]

Clabau, F.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M.-H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. LeMercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

De Baere, I.

J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Deniard, P.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M.-H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. LeMercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Dorenbos, P.

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

Dove, D.

Ph. Avouris, I. F. Chang, D. Dove, T. N. Morgan, and Y. Thefaine, “Trapping and luminescence mechanisms in manganese-doped zinc silicate phosphors–a tunneling model,” J. Electron. Mater. 10(5), 887–899 (1981).
[Crossref]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. LeMercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Giess, E. A.

P. Thioulouse, I. F. Chang, and E. A. Giess, “Comparative study of phosphorescence and photostimulated luminescence in zinc silicate phosphors and their description by a tunneling model,” J. Electrochem. Soc. 130(10), 2065–2071 (1983).
[Crossref]

Imai, Y.

C. Li, Y. Adachi, Y. Imai, K. Nishikubo, and C.-N. Xu, “Processing and properties of SrAl2O4 : Eu nanoparticles prepared via polymer-coated precursor,” J. Electrochem. Soc. 154(11), J362–J364 (2007).
[Crossref]

Jha, P.

B. P. Chandra, V. K. Chandra, and P. Jha, “Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials,” Physica B 461, 38–48 (2015).
[Crossref]

V. K. Chandra, B. P. Chandra, and P. Jha, “Strong luminescence induced by elastic deformation of piezoelectric crystals,” Appl. Phys. Lett. 102(24), 241105 (2013).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M.-H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. LeMercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Kibble, K.

Kim, J. S.

K.-S. Sohn, W. B. Park, S. Timilsina, and J. S. Kim, “Mechanoluminescence of SrAl2O4:Eu2+, Dy3+ under cyclic loading,” Opt. Lett. 39(6), 1410–1413 (2014).

J. S. Kim, K. Kibble, Y. N. Kwon, and K.-S. Sohn, “Rate-equation model for the loading-rate-dependent mechanoluminescence of SrAl2O4:Eu2+,Dy3+.,” Opt. Lett. 34(13), 1915–1917 (2009).
[Crossref] [PubMed]

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater. 53(16), 4337–4343 (2005).
[Crossref]

J. S. Kim, Y.-N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater. 51(20), 6437–6442 (2003).
[Crossref]

Kwon, Y. N.

J. S. Kim, K. Kibble, Y. N. Kwon, and K.-S. Sohn, “Rate-equation model for the loading-rate-dependent mechanoluminescence of SrAl2O4:Eu2+,Dy3+.,” Opt. Lett. 34(13), 1915–1917 (2009).
[Crossref] [PubMed]

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater. 53(16), 4337–4343 (2005).
[Crossref]

K.-S. Sohn, S. Y. Seo, Y. N. Kwon, and H. D. Park, “Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu,Dy,Nd),” J. Am. Ceram. Soc. 85(3), 712–714 (2002).
[Crossref]

Kwon, Y.-N.

J. S. Kim, Y.-N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater. 51(20), 6437–6442 (2003).
[Crossref]

Le Mercier, T.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M.-H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

LeMercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. LeMercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Li, C.

C. Li, Y. Adachi, Y. Imai, K. Nishikubo, and C.-N. Xu, “Processing and properties of SrAl2O4 : Eu nanoparticles prepared via polymer-coated precursor,” J. Electrochem. Soc. 154(11), J362–J364 (2007).
[Crossref]

Liu, Y.

Y. Liu and C.-N. Xu, “Influence of calcining temperature on photoluminescence and triboluminescence of europium-doped strontium aluminate particles prepared by sol−gel process,” J. Phys. Chem. B 107(17), 3991–3995 (2003).
[Crossref]

Long, Y.-Z.

J.-C. Zhang, Y.-Z. Long, X. Wang, and C.-N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv. 4(77), 40665–40675 (2014).
[Crossref]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Medlin, W. L.

W. L. Medlin, “Decay of phosphorescence in CaCO3, MgCO3, CaMg(CO3)2, and CaS,” Phys. Rev. 122(3), 837–842 (1961).
[Crossref]

W. L. Medlin, “Decay of phosphorescence from a distribution of trapping levels,” Phys. Rev. 123(2), 502–509 (1961).
[Crossref]

Morgan, T. N.

Ph. Avouris, I. F. Chang, D. Dove, T. N. Morgan, and Y. Thefaine, “Trapping and luminescence mechanisms in manganese-doped zinc silicate phosphors–a tunneling model,” J. Electron. Mater. 10(5), 887–899 (1981).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Nishikubo, K.

C. Li, Y. Adachi, Y. Imai, K. Nishikubo, and C.-N. Xu, “Processing and properties of SrAl2O4 : Eu nanoparticles prepared via polymer-coated precursor,” J. Electrochem. Soc. 154(11), J362–J364 (2007).
[Crossref]

Park, H. D.

K.-S. Sohn, S. Y. Seo, Y. N. Kwon, and H. D. Park, “Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu,Dy,Nd),” J. Am. Ceram. Soc. 85(3), 712–714 (2002).
[Crossref]

Park, W. B.

Poelman, D.

J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M.-H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. LeMercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Seo, S. Y.

K.-S. Sohn, S. Y. Seo, Y. N. Kwon, and H. D. Park, “Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu,Dy,Nd),” J. Am. Ceram. Soc. 85(3), 712–714 (2002).
[Crossref]

Shin, N.

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater. 53(16), 4337–4343 (2005).
[Crossref]

Smet, P. F.

J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Sohn, K.-S.

K.-S. Sohn, W. B. Park, S. Timilsina, and J. S. Kim, “Mechanoluminescence of SrAl2O4:Eu2+, Dy3+ under cyclic loading,” Opt. Lett. 39(6), 1410–1413 (2014).

J. S. Kim, K. Kibble, Y. N. Kwon, and K.-S. Sohn, “Rate-equation model for the loading-rate-dependent mechanoluminescence of SrAl2O4:Eu2+,Dy3+.,” Opt. Lett. 34(13), 1915–1917 (2009).
[Crossref] [PubMed]

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater. 53(16), 4337–4343 (2005).
[Crossref]

J. S. Kim, Y.-N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater. 51(20), 6437–6442 (2003).
[Crossref]

K.-S. Sohn, S. Y. Seo, Y. N. Kwon, and H. D. Park, “Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu,Dy,Nd),” J. Am. Ceram. Soc. 85(3), 712–714 (2002).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Thefaine, Y.

Ph. Avouris, I. F. Chang, D. Dove, T. N. Morgan, and Y. Thefaine, “Trapping and luminescence mechanisms in manganese-doped zinc silicate phosphors–a tunneling model,” J. Electron. Mater. 10(5), 887–899 (1981).
[Crossref]

Thioulouse, P.

P. Thioulouse, I. F. Chang, and E. A. Giess, “Comparative study of phosphorescence and photostimulated luminescence in zinc silicate phosphors and their description by a tunneling model,” J. Electrochem. Soc. 130(10), 2065–2071 (1983).
[Crossref]

Timilsina, S.

Van den Eeckhout, K.

J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Wang, X.

J.-C. Zhang, Y.-Z. Long, X. Wang, and C.-N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv. 4(77), 40665–40675 (2014).
[Crossref]

C.-N. Xu, H. Yamada, X. Wang, and X.-G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040 (2004).
[Crossref]

Watanabe, T.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Whangbo, M.-H.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M.-H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. LeMercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Xu, C. N.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Xu, C.-N.

J.-C. Zhang, Y.-Z. Long, X. Wang, and C.-N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv. 4(77), 40665–40675 (2014).
[Crossref]

C. Li, Y. Adachi, Y. Imai, K. Nishikubo, and C.-N. Xu, “Processing and properties of SrAl2O4 : Eu nanoparticles prepared via polymer-coated precursor,” J. Electrochem. Soc. 154(11), J362–J364 (2007).
[Crossref]

C.-N. Xu, H. Yamada, X. Wang, and X.-G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040 (2004).
[Crossref]

Y. Liu and C.-N. Xu, “Influence of calcining temperature on photoluminescence and triboluminescence of europium-doped strontium aluminate particles prepared by sol−gel process,” J. Phys. Chem. B 107(17), 3991–3995 (2003).
[Crossref]

Yamada, H.

C.-N. Xu, H. Yamada, X. Wang, and X.-G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040 (2004).
[Crossref]

Zhang, J.-C.

J.-C. Zhang, Y.-Z. Long, X. Wang, and C.-N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv. 4(77), 40665–40675 (2014).
[Crossref]

Zheng, X. G.

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

Zheng, X.-G.

C.-N. Xu, H. Yamada, X. Wang, and X.-G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040 (2004).
[Crossref]

Acta Mater. (3)

J. S. Kim, Y.-N. Kwon, and K.-S. Sohn, “Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4: (Eu,Dy,Nd),” Acta Mater. 51(20), 6437–6442 (2003).
[Crossref]

J. S. Kim, Y. N. Kwon, N. Shin, and K.-S. Sohn, “Visualization of fractures in alumina ceramics by mechanoluminescence,” Acta Mater. 53(16), 4337–4343 (2005).
[Crossref]

J. Botterman, K. Van den Eeckhout, I. De Baere, D. Poelman, and P. F. Smet, “Mechanoluminescence in BaSi2O2N2:Eu,” Acta Mater. 60(15), 5494–5500 (2012).
[Crossref]

Appl. Phys. Lett. (3)

V. K. Chandra, B. P. Chandra, and P. Jha, “Strong luminescence induced by elastic deformation of piezoelectric crystals,” Appl. Phys. Lett. 102(24), 241105 (2013).
[Crossref]

C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Direct view of stress distribution in solid by mechanoluminescenc,” Appl. Phys. Lett. 74(17), 2414–2416 (1999).
[Crossref]

C.-N. Xu, H. Yamada, X. Wang, and X.-G. Zheng, “Strong elasticoluminescence from monoclinic-structure SrAl2O4,” Appl. Phys. Lett. 84(16), 3040 (2004).
[Crossref]

Chem. Mater. (2)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. LeMercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M.-H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[Crossref]

J. Am. Ceram. Soc. (1)

K.-S. Sohn, S. Y. Seo, Y. N. Kwon, and H. D. Park, “Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu,Dy,Nd),” J. Am. Ceram. Soc. 85(3), 712–714 (2002).
[Crossref]

J. Electrochem. Soc. (4)

P. Dorenbos, “Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds,” J. Electrochem. Soc. 152(7), H107–H110 (2005).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4 : Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

C. Li, Y. Adachi, Y. Imai, K. Nishikubo, and C.-N. Xu, “Processing and properties of SrAl2O4 : Eu nanoparticles prepared via polymer-coated precursor,” J. Electrochem. Soc. 154(11), J362–J364 (2007).
[Crossref]

P. Thioulouse, I. F. Chang, and E. A. Giess, “Comparative study of phosphorescence and photostimulated luminescence in zinc silicate phosphors and their description by a tunneling model,” J. Electrochem. Soc. 130(10), 2065–2071 (1983).
[Crossref]

J. Electron. Mater. (1)

Ph. Avouris, I. F. Chang, D. Dove, T. N. Morgan, and Y. Thefaine, “Trapping and luminescence mechanisms in manganese-doped zinc silicate phosphors–a tunneling model,” J. Electron. Mater. 10(5), 887–899 (1981).
[Crossref]

J. Lumin. (1)

V. K. Chandra and B. P. Chandra, “Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals,” J. Lumin. 132(3), 858–869 (2012).
[Crossref]

J. Phys. Chem. B (1)

Y. Liu and C.-N. Xu, “Influence of calcining temperature on photoluminescence and triboluminescence of europium-doped strontium aluminate particles prepared by sol−gel process,” J. Phys. Chem. B 107(17), 3991–3995 (2003).
[Crossref]

Opt. Lett. (2)

Phys. Rev. (2)

W. L. Medlin, “Decay of phosphorescence in CaCO3, MgCO3, CaMg(CO3)2, and CaS,” Phys. Rev. 122(3), 837–842 (1961).
[Crossref]

W. L. Medlin, “Decay of phosphorescence from a distribution of trapping levels,” Phys. Rev. 123(2), 502–509 (1961).
[Crossref]

Physica B (1)

B. P. Chandra, V. K. Chandra, and P. Jha, “Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials,” Physica B 461, 38–48 (2015).
[Crossref]

RSC Adv. (1)

J.-C. Zhang, Y.-Z. Long, X. Wang, and C.-N. Xu, “Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions,” RSC Adv. 4(77), 40665–40675 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 ML response to the cyclic load at a frequency 1 Hz under three different excitation conditions, (a) with UV excitation turned off, and under a UV LED light source with a power density of (b) 200 mW/cm2, and (c) 1,000 mW/cm2.
Fig. 2
Fig. 2 Small fragments of ML responses for 1, 3, and 5 Hz, showing almost identical amplitudes under the same applied load amplitude under a UV LED light source with a power density of 1,000 mW/cm2.
Fig. 3
Fig. 3 Fast Fourier transform (FFT) of 5 Hz ML responses, (a) with UV excitation turned off, and under a UV LED light source with a power density of (b) 200 mW/cm2, and (c) 1,000 mW/cm2.
Fig. 4
Fig. 4 Zoomed-in ML signal along with an applied cyclic load at 5 Hz, (a) with UV excitation turned off, and (b) under a UV LED light source with a power density of 1,000 mW/cm2.
Fig. 5
Fig. 5 The loading-deloading curves at 5 Hz for two extremely different excitation conditions, (a) with UV excitation turned off, and (b) under a UV LED light source with a power density of 1,000 mW/cm2.
Fig. 6
Fig. 6 ML response to the step loading up to 750 N for three different excitation conditions, (a) with UV excitation off, and under a UV LED light source with a power density of (b) 200 mW/cm2, and (c) 1,000 mW/cm2.
Fig. 7
Fig. 7 Load vs. ML intensity curve measured in a single loading-deloading cycle for three different static loading rates, 0.1, 1, and 10 kN/sec. under a UV light source with a power density of 1,000 mW/cm2.
Fig. 8
Fig. 8 Schematics for a systematic comparison of ML behavior between with UV excitation turned on and turned off.

Metrics