Abstract

A novel and highly sensitive liquid level sensor based on a polymer optical fiber Bragg grating (POFBG) is experimentally demonstrated. Two different configurations are studied and both configurations show the potential to interrogate liquid level by measuring the strain induced in a POFBG embedded in a silicone rubber diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range and a good repeatability. For comparison, a similar sensor using a FBG inscribed in silica fiber is fabricated, which displays a sensitivity that is a factor of 5 smaller than the POFBG. The temperature sensitivity is studied and a novel multi-sensor arrangement proposed which has the potential to provide level readings independent of temperature and the liquid density.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Material features based compensation technique for the temperature effects in a polymer diaphragm-based FBG pressure sensor

Arnaldo Leal-Junior, Anselmo Frizera, Camilo Díaz, Carlos Marques, Moisés Ribeiro, and Maria José Pontes
Opt. Express 26(16) 20590-20602 (2018)

Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor

Getinet Woyessa, Kristian Nielsen, Alessio Stefani, Christos Markos, and Ole Bang
Opt. Express 24(2) 1206-1213 (2016)

Highly sensitive liquid-level sensor based on dual-wavelength double-ring fiber laser assisted by beat frequency interrogation

Yi Dai, Qizhen Sun, Sisi Tan, Jianghai Wo, Jiejun Zhang, and Deming Liu
Opt. Express 20(25) 27367-27376 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
    [Crossref] [PubMed]
  2. C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” J. Phys. Conf. Ser. 178, 012020 (2009).
    [Crossref]
  3. W. Zhang, D. J. Webb, and G.-D. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
    [Crossref] [PubMed]
  4. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
    [Crossref]
  5. A. Abang and D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Opt. Lett. 38(9), 1376–1378 (2013).
    [Crossref] [PubMed]
  6. K. Peters, “Polymer optical fiber sensors - A review,” Smart Mater. Struct. 20(1), 013002 (2011).
    [Crossref]
  7. W. Zhang and D. J. Webb, “Humidity responsivity of poly(methyl methacrylate)-based optical fiber Bragg grating sensors,” Opt. Lett. 39(10), 3026–3029 (2014).
    [Crossref] [PubMed]
  8. J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, Z. Gao, and H. Xiao, “Polymer optical fiber for large strain measurement based on multimode interference,” Opt. Lett. 37(20), 4308–4310 (2012).
    [Crossref] [PubMed]
  9. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  10. G. Betta, L. Ippolito, A. Pietrosanto, and A. Scaglione, “Optical fiber-based technique for continuous-level sensing,” IEEE Trans. Instrum. Meas. 44(3), 686–689 (1995).
    [Crossref]
  11. G. Betta, A. Pietrosanto, and A. Scaglione, “A digital liquid level transducer based on optical fiber,” IEEE Trans. Instrum. Meas. 45(2), 551–555 (1996).
    [Crossref]
  12. M. Lomer, A. Quintela, M. López-Amo, J. Zubia, and J. M. López-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fiber cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
    [Crossref]
  13. C. Zhao, L. Ye, X. Yu, and J. Ge, “Continuous fuel level sensor based on spiral side-emitting optical fiber,” J. Contr. Sci. Eng. 2012, 267519 (2012).
    [Crossref]
  14. B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber bragg grating,” IEEE Photon. Technol. Lett. 19(21), 1747–1749 (2007).
    [Crossref]
  15. T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17(11), 2400–2402 (2005).
    [Crossref]
  16. H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
    [Crossref]
  17. C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fiber grating,” Opt. Commun. 305, 271–275 (2013).
    [Crossref]
  18. Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
    [Crossref]
  19. B. Gu, W. Qi, Y. Zhou, Z. Wu, P. P. Shum, and F. Luan, “Reflective liquid level sensor based on modes conversion in thin-core fiber incorporating titled fiber Bragg grating,” Opt. Express 22(10), 11834–11839 (2014).
    [Crossref] [PubMed]
  20. D. Sengupta and P. Kishore, “Continuous liquid level monitoring sensor system using fiber Bragg grating,” Opt. Eng. 53(1), 017102 (2014).
    [Crossref]
  21. M. F. Ashby, Materials Selection in Mechanical Design, 2nd ed. (Oxford, UK, 389 1999).
  22. A. Othonos and K. Kalli, Fiber Bragg Gratings – Fundamentals and Applications in Telecommunications and Sensing (Artech House 1999).
  23. H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” IEEE Photon. Technol. Lett. 14(7), 935–937 (2002).
    [Crossref]
  24. http://www.dowcorning.com/content/rubber/
  25. S. J. Grice, “Optical fibre sensors and their applications in the industrial weighing and aerospace industries”, PhD thesis, Aston University, (2010).
  26. X. Hu, D. Kinet, K. Chah, P. Mégret, and C. Caucheteur, “Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 87942Q (May 20, 2013).
  27. W. Zhang, and D. J. Webb, “Factors influencing the temperature sensitivity of PMMA based optical fiber Bragg gratings,” Proc. SPIE 9128, Micro-structured and Specialty Optical Fibres III, 91280M, Belgium, (2014).
  28. L. Prod’Homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119 (1960).
  29. M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communications,” Opt. Mater. 9(1-4), 192–200 (1998).
    [Crossref]

2014 (3)

2013 (2)

A. Abang and D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Opt. Lett. 38(9), 1376–1378 (2013).
[Crossref] [PubMed]

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fiber grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

2012 (4)

C. Zhao, L. Ye, X. Yu, and J. Ge, “Continuous fuel level sensor based on spiral side-emitting optical fiber,” J. Contr. Sci. Eng. 2012, 267519 (2012).
[Crossref]

J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, Z. Gao, and H. Xiao, “Polymer optical fiber for large strain measurement based on multimode interference,” Opt. Lett. 37(20), 4308–4310 (2012).
[Crossref] [PubMed]

W. Zhang, D. J. Webb, and G.-D. Peng, “Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor,” Opt. Lett. 37(8), 1370–1372 (2012).
[Crossref] [PubMed]

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

2011 (4)

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[Crossref]

K. Peters, “Polymer optical fiber sensors - A review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

2009 (1)

C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” J. Phys. Conf. Ser. 178, 012020 (2009).
[Crossref]

2007 (2)

M. Lomer, A. Quintela, M. López-Amo, J. Zubia, and J. M. López-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fiber cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber bragg grating,” IEEE Photon. Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

2005 (1)

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

2002 (1)

H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” IEEE Photon. Technol. Lett. 14(7), 935–937 (2002).
[Crossref]

1998 (1)

M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communications,” Opt. Mater. 9(1-4), 192–200 (1998).
[Crossref]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

1996 (1)

G. Betta, A. Pietrosanto, and A. Scaglione, “A digital liquid level transducer based on optical fiber,” IEEE Trans. Instrum. Meas. 45(2), 551–555 (1996).
[Crossref]

1995 (1)

G. Betta, L. Ippolito, A. Pietrosanto, and A. Scaglione, “Optical fiber-based technique for continuous-level sensing,” IEEE Trans. Instrum. Meas. 44(3), 686–689 (1995).
[Crossref]

1960 (1)

L. Prod’Homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119 (1960).

Abang, A.

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

Bang, O.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Bennion, I.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Betta, G.

G. Betta, A. Pietrosanto, and A. Scaglione, “A digital liquid level transducer based on optical fiber,” IEEE Trans. Instrum. Meas. 45(2), 551–555 (1996).
[Crossref]

G. Betta, L. Ippolito, A. Pietrosanto, and A. Scaglione, “Optical fiber-based technique for continuous-level sensing,” IEEE Trans. Instrum. Meas. 44(3), 686–689 (1995).
[Crossref]

Chambers, A. R.

C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” J. Phys. Conf. Ser. 178, 012020 (2009).
[Crossref]

Chen, N.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber bragg grating,” IEEE Photon. Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

Chu, P. L.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” IEEE Photon. Technol. Lett. 14(7), 935–937 (2002).
[Crossref]

Cui, Y.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber bragg grating,” IEEE Photon. Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

Diemeer, M. B. J.

M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communications,” Opt. Mater. 9(1-4), 192–200 (1998).
[Crossref]

Dong, X. Y.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Dou, Q. Y.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Dulieu-Barton, J. M.

C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” J. Phys. Conf. Ser. 178, 012020 (2009).
[Crossref]

Eastop, D. D.

C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” J. Phys. Conf. Ser. 178, 012020 (2009).
[Crossref]

Fu, H. Y.

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fiber grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Gao, Z.

Ge, J.

C. Zhao, L. Ye, X. Yu, and J. Ge, “Continuous fuel level sensor based on spiral side-emitting optical fiber,” J. Contr. Sci. Eng. 2012, 267519 (2012).
[Crossref]

Gu, B.

Guo, T.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

He, S. L.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Hu, D.

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[Crossref]

Huang, G. L.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Huang, J.

Ippolito, L.

G. Betta, L. Ippolito, A. Pietrosanto, and A. Scaglione, “Optical fiber-based technique for continuous-level sensing,” IEEE Trans. Instrum. Meas. 44(3), 686–689 (1995).
[Crossref]

Jiang, Q.

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[Crossref]

Kalli, K.

Khan, L.

Kishore, P.

D. Sengupta and P. Kishore, “Continuous liquid level monitoring sensor system using fiber Bragg grating,” Opt. Eng. 53(1), 017102 (2014).
[Crossref]

Lan, X.

Lennard, F. J.

C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” J. Phys. Conf. Ser. 178, 012020 (2009).
[Crossref]

Liu, H. Y.

H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” IEEE Photon. Technol. Lett. 14(7), 935–937 (2002).
[Crossref]

Liu, W. S.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Lomer, M.

M. Lomer, A. Quintela, M. López-Amo, J. Zubia, and J. M. López-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fiber cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

López-Amo, M.

M. Lomer, A. Quintela, M. López-Amo, J. Zubia, and J. M. López-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fiber cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

López-Higuera, J. M.

M. Lomer, A. Quintela, M. López-Amo, J. Zubia, and J. M. López-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fiber cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

Luan, F.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Mou, C. B.

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fiber grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Peng, G. D.

C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” J. Phys. Conf. Ser. 178, 012020 (2009).
[Crossref]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” IEEE Photon. Technol. Lett. 14(7), 935–937 (2002).
[Crossref]

Peng, G.-D.

Peters, K.

K. Peters, “Polymer optical fiber sensors - A review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Pietrosanto, A.

G. Betta, A. Pietrosanto, and A. Scaglione, “A digital liquid level transducer based on optical fiber,” IEEE Trans. Instrum. Meas. 45(2), 551–555 (1996).
[Crossref]

G. Betta, L. Ippolito, A. Pietrosanto, and A. Scaglione, “Optical fiber-based technique for continuous-level sensing,” IEEE Trans. Instrum. Meas. 44(3), 686–689 (1995).
[Crossref]

Prod’Homme, L.

L. Prod’Homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119 (1960).

Qi, W.

Quintela, A.

M. Lomer, A. Quintela, M. López-Amo, J. Zubia, and J. M. López-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fiber cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

Rasmussen, H. K.

Scaglione, A.

G. Betta, A. Pietrosanto, and A. Scaglione, “A digital liquid level transducer based on optical fiber,” IEEE Trans. Instrum. Meas. 45(2), 551–555 (1996).
[Crossref]

G. Betta, L. Ippolito, A. Pietrosanto, and A. Scaglione, “Optical fiber-based technique for continuous-level sensing,” IEEE Trans. Instrum. Meas. 44(3), 686–689 (1995).
[Crossref]

Sengupta, D.

D. Sengupta and P. Kishore, “Continuous liquid level monitoring sensor system using fiber Bragg grating,” Opt. Eng. 53(1), 017102 (2014).
[Crossref]

Shu, X. W.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Shum, P. P.

Stefani, A.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Wang, H.

Webb, D. J.

Wei, T.

Wu, Z.

Xiao, H.

Xue, L. F.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Yan, Z. J.

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fiber grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Yang, M.

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[Crossref]

Ye, C. C.

C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” J. Phys. Conf. Ser. 178, 012020 (2009).
[Crossref]

Ye, L.

C. Zhao, L. Ye, X. Yu, and J. Ge, “Continuous fuel level sensor based on spiral side-emitting optical fiber,” J. Contr. Sci. Eng. 2012, 267519 (2012).
[Crossref]

Yu, X.

C. Zhao, L. Ye, X. Yu, and J. Ge, “Continuous fuel level sensor based on spiral side-emitting optical fiber,” J. Contr. Sci. Eng. 2012, 267519 (2012).
[Crossref]

Yuan, L.

Yuan, W.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, and O. Bang, “Humidity insensitive TOPAS polymer fiber Bragg grating sensor,” Opt. Express 19(20), 19731–19739 (2011).
[Crossref] [PubMed]

Yun, B.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber bragg grating,” IEEE Photon. Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

Zhang, A. P.

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Zhang, C.

C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” J. Phys. Conf. Ser. 178, 012020 (2009).
[Crossref]

Zhang, H.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Zhang, L.

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fiber grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

Zhang, W.

Zhao, C.

C. Zhao, L. Ye, X. Yu, and J. Ge, “Continuous fuel level sensor based on spiral side-emitting optical fiber,” J. Contr. Sci. Eng. 2012, 267519 (2012).
[Crossref]

Zhao, Q. D.

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

Zhou, K. M.

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fiber grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Zhou, Y.

Zubia, J.

M. Lomer, A. Quintela, M. López-Amo, J. Zubia, and J. M. López-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fiber cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (4)

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, “High sensitivity polymer optical fiber-Bragg-grating-based accelerometer,” IEEE Photon. Technol. Lett. 24(9), 763–765 (2012).
[Crossref]

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber bragg grating,” IEEE Photon. Technol. Lett. 19(21), 1747–1749 (2007).
[Crossref]

T. Guo, Q. D. Zhao, Q. Y. Dou, H. Zhang, L. F. Xue, G. L. Huang, and X. Y. Dong, “Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam,” IEEE Photon. Technol. Lett. 17(11), 2400–2402 (2005).
[Crossref]

H. Y. Liu, G. D. Peng, and P. L. Chu, “Polymer fiber Bragg gratings with 28-dB transmission rejection,” IEEE Photon. Technol. Lett. 14(7), 935–937 (2002).
[Crossref]

IEEE Sens. J. (1)

H. Y. Fu, X. W. Shu, A. P. Zhang, W. S. Liu, L. Zhang, S. L. He, and I. Bennion, “Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer,” IEEE Sens. J. 11(11), 2878–2882 (2011).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

G. Betta, L. Ippolito, A. Pietrosanto, and A. Scaglione, “Optical fiber-based technique for continuous-level sensing,” IEEE Trans. Instrum. Meas. 44(3), 686–689 (1995).
[Crossref]

G. Betta, A. Pietrosanto, and A. Scaglione, “A digital liquid level transducer based on optical fiber,” IEEE Trans. Instrum. Meas. 45(2), 551–555 (1996).
[Crossref]

J. Contr. Sci. Eng. (1)

C. Zhao, L. Ye, X. Yu, and J. Ge, “Continuous fuel level sensor based on spiral side-emitting optical fiber,” J. Contr. Sci. Eng. 2012, 267519 (2012).
[Crossref]

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

J. Phys. Conf. Ser. (1)

C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” J. Phys. Conf. Ser. 178, 012020 (2009).
[Crossref]

Meas. Sci. Technol. (1)

M. Lomer, A. Quintela, M. López-Amo, J. Zubia, and J. M. López-Higuera, “A quasi-distributed level sensor based on a bent side-polished plastic optical fiber cable,” Meas. Sci. Technol. 18(7), 2261–2267 (2007).
[Crossref]

Opt. Commun. (1)

C. B. Mou, K. M. Zhou, Z. J. Yan, H. Y. Fu, and L. Zhang, “Liquid level sensor based on an excessively tilted fiber grating,” Opt. Commun. 305, 271–275 (2013).
[Crossref]

Opt. Eng. (1)

D. Sengupta and P. Kishore, “Continuous liquid level monitoring sensor system using fiber Bragg grating,” Opt. Eng. 53(1), 017102 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. (1)

M. B. J. Diemeer, “Polymeric thermo-optic space switches for optical communications,” Opt. Mater. 9(1-4), 192–200 (1998).
[Crossref]

Phys. Chem. Glasses (1)

L. Prod’Homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119 (1960).

Sens. Actuators A Phys. (1)

Q. Jiang, D. Hu, and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sens. Actuators A Phys. 170(1-2), 62–65 (2011).
[Crossref]

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors - A review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Other (6)

M. F. Ashby, Materials Selection in Mechanical Design, 2nd ed. (Oxford, UK, 389 1999).

A. Othonos and K. Kalli, Fiber Bragg Gratings – Fundamentals and Applications in Telecommunications and Sensing (Artech House 1999).

http://www.dowcorning.com/content/rubber/

S. J. Grice, “Optical fibre sensors and their applications in the industrial weighing and aerospace industries”, PhD thesis, Aston University, (2010).

X. Hu, D. Kinet, K. Chah, P. Mégret, and C. Caucheteur, “Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 87942Q (May 20, 2013).

W. Zhang, and D. J. Webb, “Factors influencing the temperature sensitivity of PMMA based optical fiber Bragg gratings,” Proc. SPIE 9128, Micro-structured and Specialty Optical Fibres III, 91280M, Belgium, (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Plastic container used for the diaphragm fabrication.
Fig. 2
Fig. 2 Design of the sensor system using a single POFBG: (a) sensor base design; (b) complete sensor with diaphragm and retaining ring. (c) Photograph of the assembled sensor unit. (d) Zoom showing the POFBG embedded in the silicone rubber.
Fig. 3
Fig. 3 (a) Left: five discrete pressure sensors, with three submerged in liquid; right: determination of liquid level using linear regression. (b) Diagram of the acrylic tube sensor arrangement using multi-POFBGs. (c) Photograph of the multi-POFBG sensor.
Fig. 4
Fig. 4 Experimental setup for liquid level measurement using (a) a single diaphragm/POFBG sensor and (b) multiple diaphragm/POFBG sensors.
Fig. 5
Fig. 5 Response of the Bragg wavelength shift versus liquid level using a single diaphragm/POFBG sensor.
Fig. 6
Fig. 6 Response of the wavelength shift versus liquid level using a single diaphragm/FBG sensor based on a silica fiber.
Fig. 7
Fig. 7 Responses of the wavelength shift versus liquid level using multiple diaphragm/POFBG sensor: (a) sensor 1, (b) sensor 2, (c) sensor 3 and (d) sensor 4.
Fig. 8
Fig. 8 (a) Diagram of the acrylic tube sensor arrangement showing the sensors submerged and the measurement range. (b-d) Wavelength change versus liquid level for each submerged sensor.
Fig. 9
Fig. 9 Measured wavelength shift versus temperature variation for submerged sensors (sensor 1, sensor 2, sensor 3, and sensor 4) and the sensor above the liquid (sensor 5).
Fig. 10
Fig. 10 Determination of liquid level using linear regression for a position of the liquid surface at (a) 60 cm and (b) 43 cm.

Tables (4)

Tables Icon

Table 1 Single POFBG sensor system – wavelength / sensitivity analysis.

Tables Icon

Table 2 Multi-POFBG sensor system – wavelength / sensitivity analysis.

Tables Icon

Table 4 Measurement range and resolution of several liquid level sensors.

Tables Icon

Table 3 Wavelength / sensitivity analysis of three submerged sensors.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δp=ρgh
δ c = 3 16 ( 1 υ 2 ) Δp r 4 E t 3
ε max = 3 8 ( 1+υ ) Δp r 2 E t 2
Δ λ B = λ B ( 1 ρ e ) ε max

Metrics