Abstract

We report, to the best of our knowledge, the first experimental proof of MMI-based resonators. The resonators have been designed and fabricated on a micron-scale silicon photonics platform and are based on different reflectors suitably placed on two of the four ports of 2x2 MMIs with uneven splitting ratios, namely 85:15 and 72:28. The reflectors are either based on aluminum mirrors or on all-dielectric MMI mirrors. Performances of the different designs are compared with each other and with numerical simulations. Finesse values as high as 13.1 (9.9) have been measured in best aluminum (all-dielectric) resonators, corresponding to a quality factor of 5.8⋅103 (12.5⋅103) and mirror reflectivity exceeding 92% (88%).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mirror cavity MMI coupled photonic wire resonator in SOI

Przemek J. Bock, Pavel Cheben, Dan-Xia Xu, Siegfried Janz, and Trevor J. Hall
Opt. Express 15(21) 13907-13912 (2007)

High bandwidth SOI photonic wire ring resonators using MMI couplers

Dan-Xia Xu, Adam Densmore, Philip Waldron, Jean Lapointe, Edith Post, André Delâge, Siegfried Janz, Pavel Cheben, Jens H. Schmid, and Boris Lamontagne
Opt. Express 15(6) 3149-3155 (2007)

Two-port multimode interference reflectors based on aluminium mirrors in a thick SOI platform

Javier S. Fandiño, José David Doménech, and Pascual Muñoz
Opt. Express 23(16) 20219-20233 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  2. R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP‐based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64(14), 1753–1755 (1994).
    [Crossref]
  3. T. F. Krauss, R. M. De La Rue, and P. J. R. Laybourn, “Impact of output coupler configuration on operating characteristics of semiconductor ring lasers,” J. Lightwave Technol. 13(7), 1500–1507 (1995).
    [Crossref]
  4. P. J. Bock, P. Cheben, D.-X. Xu, S. Janz, and T. J. Hall, “Mirror cavity MMI coupled photonic wire resonator in SOI,” Opt. Express 15(21), 13907–13912 (2007).
    [Crossref] [PubMed]
  5. S. Zamek, L. Feng, M. Khajavikhan, D. T. H. Tan, M. Ayache, and Y. Fainman, “Micro-resonator with metallic mirrors coupled to a bus waveguide,” Opt. Express 19(3), 2417–2425 (2011).
    [Crossref] [PubMed]
  6. C. Alonso-Ramos, A. Ortega-Monux, I. Molina-Fernandez, A. Annoni, A. Melloni, M. Strain, M. Sorel, P. Orlandi, P. Bassi, and F. Morichetti, “Silicon-on-insulator single channel-extraction filter for DWDM applications,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (2014), pp. 219–220.
    [Crossref]
  7. M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Deeply etched MMI-based components on 4 μm thick SOI for SOA-based optical RAM cell circuits,” in Proceedings of SPIE, J. Kubby and G. T. Reed, eds. (2013), p. 86290C.
    [Crossref]
  8. M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt. 34(30), 6898–6910 (1995).
    [Crossref] [PubMed]
  9. J. Leuthold and C. W. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol. 19(5), 700–707 (2001).
    [Crossref]
  10. E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode interference reflectors: a new class of components for photonic integrated circuits,” J. Lightwave Technol. 31(18), 3055–3063 (2013).
    [Crossref]
  11. P. Yeh, Optical Waves in Layered Media (Wiley, 2004).
  12. A. E. Siegman, Lasers (University Science Books, 1986).
  13. M. Suter and P. Dietiker, “Calculation of the finesse of an ideal Fabry-Perot resonator,” Appl. Opt. 53(30), 7004–7010 (2014).
    [Crossref] [PubMed]
  14. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
    [Crossref]
  15. T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
    [Crossref]
  16. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  17. K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, and P. Heimala, “Development of multi-step processing in silicon-on-insulator for optical waveguide applications,” J. Opt. Pure Appl. Opt. 8(7), S455–S460 (2006).
    [Crossref]
  18. F. Gao, S. Ylinen, M. Kainlauri, and M. Kapulainen, “Smooth silicon sidewall etching for waveguide structures using a modified Bosch process,” J. MicroNanolithography MEMS MOEMS 13(1), 013010 (2014).
    [Crossref]
  19. J. D. Doménech, J. S. Fandiño, B. Gargallo, and P. Muñoz, “Arbitrary Coupling Ratio Multimode Interference Couplers in Silicon-on-Insulator,” J. Lightwave Technol. 32(14), 2536–2543 (2014).
    [Crossref]

2014 (3)

2013 (1)

2011 (1)

2007 (1)

2006 (2)

K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, and P. Heimala, “Development of multi-step processing in silicon-on-insulator for optical waveguide applications,” J. Opt. Pure Appl. Opt. 8(7), S455–S460 (2006).
[Crossref]

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[Crossref]

2001 (1)

1998 (1)

1995 (3)

M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt. 34(30), 6898–6910 (1995).
[Crossref] [PubMed]

T. F. Krauss, R. M. De La Rue, and P. J. R. Laybourn, “Impact of output coupler configuration on operating characteristics of semiconductor ring lasers,” J. Lightwave Technol. 13(7), 1500–1507 (1995).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

1994 (1)

R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP‐based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64(14), 1753–1755 (1994).
[Crossref]

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Aalto, T.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[Crossref]

K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, and P. Heimala, “Development of multi-step processing in silicon-on-insulator for optical waveguide applications,” J. Opt. Pure Appl. Opt. 8(7), S455–S460 (2006).
[Crossref]

Ayache, M.

Bachmann, M.

Besse, P. A.

Bock, P. J.

Cheben, P.

De La Rue, R. M.

T. F. Krauss, R. M. De La Rue, and P. J. R. Laybourn, “Impact of output coupler configuration on operating characteristics of semiconductor ring lasers,” J. Lightwave Technol. 13(7), 1500–1507 (1995).
[Crossref]

Dekker, J.

K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, and P. Heimala, “Development of multi-step processing in silicon-on-insulator for optical waveguide applications,” J. Opt. Pure Appl. Opt. 8(7), S455–S460 (2006).
[Crossref]

Dietiker, P.

Djurisic, A. B.

Doménech, J. D.

Elazar, J. M.

Fainman, Y.

Fandiño, J. S.

Feng, L.

Gao, F.

F. Gao, S. Ylinen, M. Kainlauri, and M. Kapulainen, “Smooth silicon sidewall etching for waveguide structures using a modified Bosch process,” J. MicroNanolithography MEMS MOEMS 13(1), 013010 (2014).
[Crossref]

Gargallo, B.

Hall, T. J.

Harjanne, M.

K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, and P. Heimala, “Development of multi-step processing in silicon-on-insulator for optical waveguide applications,” J. Opt. Pure Appl. Opt. 8(7), S455–S460 (2006).
[Crossref]

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[Crossref]

Heimala, P.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[Crossref]

K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, and P. Heimala, “Development of multi-step processing in silicon-on-insulator for optical waveguide applications,” J. Opt. Pure Appl. Opt. 8(7), S455–S460 (2006).
[Crossref]

Janz, S.

Joyner, C. W.

Kainlauri, M.

F. Gao, S. Ylinen, M. Kainlauri, and M. Kapulainen, “Smooth silicon sidewall etching for waveguide structures using a modified Bosch process,” J. MicroNanolithography MEMS MOEMS 13(1), 013010 (2014).
[Crossref]

Kapulainen, M.

F. Gao, S. Ylinen, M. Kainlauri, and M. Kapulainen, “Smooth silicon sidewall etching for waveguide structures using a modified Bosch process,” J. MicroNanolithography MEMS MOEMS 13(1), 013010 (2014).
[Crossref]

K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, and P. Heimala, “Development of multi-step processing in silicon-on-insulator for optical waveguide applications,” J. Opt. Pure Appl. Opt. 8(7), S455–S460 (2006).
[Crossref]

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[Crossref]

Khajavikhan, M.

Kleijn, E.

Krauss, T. F.

T. F. Krauss, R. M. De La Rue, and P. J. R. Laybourn, “Impact of output coupler configuration on operating characteristics of semiconductor ring lasers,” J. Lightwave Technol. 13(7), 1500–1507 (1995).
[Crossref]

Laybourn, P. J. R.

T. F. Krauss, R. M. De La Rue, and P. J. R. Laybourn, “Impact of output coupler configuration on operating characteristics of semiconductor ring lasers,” J. Lightwave Technol. 13(7), 1500–1507 (1995).
[Crossref]

Leijtens, X. J. M.

Leuthold, J.

Majewski, M. L.

Melchior, H.

Muñoz, P.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP‐based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64(14), 1753–1755 (1994).
[Crossref]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Rakic, A. D.

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Smit, M. K.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Solehmainen, K.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[Crossref]

K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, and P. Heimala, “Development of multi-step processing in silicon-on-insulator for optical waveguide applications,” J. Opt. Pure Appl. Opt. 8(7), S455–S460 (2006).
[Crossref]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Suter, M.

Tan, D. T. H.

van der Heijden, J. M. M.

R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP‐based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64(14), 1753–1755 (1994).
[Crossref]

van Dongen, T.

R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP‐based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64(14), 1753–1755 (1994).
[Crossref]

van Roijen, R.

R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP‐based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64(14), 1753–1755 (1994).
[Crossref]

van Stalen, M. J. N.

R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP‐based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64(14), 1753–1755 (1994).
[Crossref]

Verbeek, B. H.

R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP‐based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64(14), 1753–1755 (1994).
[Crossref]

Xu, D.-X.

Ylinen, S.

F. Gao, S. Ylinen, M. Kainlauri, and M. Kapulainen, “Smooth silicon sidewall etching for waveguide structures using a modified Bosch process,” J. MicroNanolithography MEMS MOEMS 13(1), 013010 (2014).
[Crossref]

Zamek, S.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. van Roijen, E. C. M. Pennings, M. J. N. van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP‐based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett. 64(14), 1753–1755 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18(5), 709–711 (2006).
[Crossref]

J. Lightwave Technol. (5)

J. MicroNanolithography MEMS MOEMS (1)

F. Gao, S. Ylinen, M. Kainlauri, and M. Kapulainen, “Smooth silicon sidewall etching for waveguide structures using a modified Bosch process,” J. MicroNanolithography MEMS MOEMS 13(1), 013010 (2014).
[Crossref]

J. Opt. Pure Appl. Opt. (1)

K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, and P. Heimala, “Development of multi-step processing in silicon-on-insulator for optical waveguide applications,” J. Opt. Pure Appl. Opt. 8(7), S455–S460 (2006).
[Crossref]

Opt. Express (2)

Other (4)

C. Alonso-Ramos, A. Ortega-Monux, I. Molina-Fernandez, A. Annoni, A. Melloni, M. Strain, M. Sorel, P. Orlandi, P. Bassi, and F. Morichetti, “Silicon-on-insulator single channel-extraction filter for DWDM applications,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (2014), pp. 219–220.
[Crossref]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Deeply etched MMI-based components on 4 μm thick SOI for SOA-based optical RAM cell circuits,” in Proceedings of SPIE, J. Kubby and G. T. Reed, eds. (2013), p. 86290C.
[Crossref]

P. Yeh, Optical Waves in Layered Media (Wiley, 2004).

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Topological equivalence between an MMI-resonator (d) and an add-drop ring-resonator (a), by suitably mirroring the ring along the highlighted symmetry axis (b) and switching the ports of the equivalent mirrored directional coupler (c).
Fig. 2
Fig. 2 (a) Cross-section of the silicon strip waveguide (b) top view of a 2D simulation of a 72:28 splitter and (c) of a 85:15 splitter.
Fig. 3
Fig. 3 (a) Metal mirror of type M1: the lower MMI waveguide is missing and the silica cladding around the input/output regions is covered by aluminum; (b) metal mirror of type M2, similar to M1, but with a thin non-etched trapezoidal shape in the bottom corner of the MMI, preventing corner rounding during fabrication; (c) metal mirror of type M3: the waveguide is not removed but tapered up to 4.5 μm and terminated in an aluminum coated T-shape to avoid corner rounding; (d) dielectric mirror of type D1; (e) dielectric mirror of type D2, with input waveguide tapered up and small non-etched triangles in the 45° mirrors to prevent corner rounding; (f) example of a 72:28 MMI resonator with M2-type mirrors; (g) detail of the left-hand-side of a 72:28 MMI resonator with M3-type mirror; (h) example of a 85:15 MMI resonator with D1-type mirrors.
Fig. 4
Fig. 4 (a) Electric field plot of a 2D simulation of an MMI reflector; (b) power back-reflected in the fundamental mode as a function of wavelength; (c) similar plot as a function of the MMI length change at 1.55 μm wavelength.
Fig. 5
Fig. 5 (a) Intensity distribution of a 72:28 MMI resonance in a 2D simulation; (b) the same for a 85:15 MMI resonance; (c), transmission (blue) and reflection (green) spectra of the 72:28 MMI resonator; (d) the same for the 85:15 MMI resonator.
Fig. 6
Fig. 6 (a) Experimental transmission spectra of 72:28 (blue solid line) and 85:15 (red dashed line) MMI resonators with M1-type mirrors; (b) same for the resonators with M2-type mirrors; (c) same for the resonators with M3-type mirrors; (d) same for the resonators with D1-type mirrors; (e) same for the resonators with D2-type mirrors.
Fig. 7
Fig. 7 (a) Transmission (green) and reflection (blue) extinction of a 72:28 MMI resonator as a function of the effective reflectivity R A assuming the losses and splitting ratio found in numerical simulations; (b) the same for a 85:15 MMI resonator; (c) the same for a 72:28 MMI resonator, but assuming the losses and splitting ratio measured in the fabricated MMIs; (d) the same for the 85:15 MMI resonator.

Tables (1)

Tables Icon

Table 1 Summary of the resonator properties

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r(ϕ)= B R A e iϕ 1CR A e iϕ ,
t(ϕ)= C [1(C+B)R A e iϕ ] 1CR A e iϕ ,
E r 20Log| r(2π) r(π) |=20Log( 1+CR A 1CR A ),
E t 20Log| t(π) t(2π) |=20Log[ 1-C(C+B) R 2 A+BR A 1-C(C+B) R 2 ABR A ].
F= 2π lnρ = π ln(CR A ) ,
Q f 0 FWHM = f 0 F FSR .

Metrics