Abstract

we report three types of pulse generation in Yb-doped nonlinear polarization rotation mode-locked fiber lasers in all-normal-dispersion regime through simulation, including dissipative soliton, dissipative soliton resonance and noise-like pulse. We distinguish the different conditions of generating such different pulses by analyzing the transmission curve of saturable absorber, which plays a key role in pulse shaping.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mechanism of dissipative-soliton-resonance generation in fiber laser mode-locked by real saturable absorber

Wenxiong Du, Heping Li, Junwen Li, Pinghe Wang, Shangjian Zhang, and Yong Liu
Opt. Express 26(16) 21314-21323 (2018)

Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser

Zhaochen Cheng, Huihui Li, Hongxing Shi, Jun Ren, Quan-Hong Yang, and Pu Wang
Opt. Express 23(6) 7000-7006 (2015)

Pump-controlled flexible generation between dissipative soliton and noise-like pulses from a mode-locked Er-doped fiber laser

Xi Cheng, Qianqian Huang, Chuanhang Zou, Chengbo Mou, Zhijun Yan, Kaiming Zhou, and Lin Zhang
Appl. Opt. 58(14) 3932-3937 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142 (1973).
    [Crossref]
  2. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber lasers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
    [Crossref]
  3. L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [Crossref]
  4. F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
    [Crossref]
  5. D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007).
    [Crossref] [PubMed]
  6. B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
    [Crossref]
  7. J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30(14), 1888–1890 (2005).
    [Crossref] [PubMed]
  8. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
    [Crossref] [PubMed]
  9. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [Crossref] [PubMed]
  10. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  11. W. Chang, A. Ankiewicz, J.-M. Soto-Crespo, and N. N. Akhmediev, “Dissipative soliton resonance,” Phys. Rev. A 78(2), 023830 (2008).
    [Crossref]
  12. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15(5), 2145–2150 (2007).
    [Crossref] [PubMed]
  13. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
    [Crossref] [PubMed]
  14. W. Chang, A. Ankiewicz, J.-M. Soto-Crespo, and N. N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
    [Crossref]
  15. A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
    [Crossref]
  16. M. Horowitz, Y. Barad, and Y. Silberberg, “Noise-like pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
    [Crossref] [PubMed]
  17. Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
    [Crossref]

2014 (1)

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

2013 (1)

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

2012 (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

2010 (1)

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

2009 (1)

2008 (3)

W. Chang, A. Ankiewicz, J.-M. Soto-Crespo, and N. N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J.-M. Soto-Crespo, and N. N. Akhmediev, “Dissipative soliton resonance,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[Crossref]

2007 (3)

2006 (1)

2005 (1)

1997 (2)

M. Horowitz, Y. Barad, and Y. Silberberg, “Noise-like pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
[Crossref] [PubMed]

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber lasers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

1973 (1)

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142 (1973).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Akhmediev, N. N.

Amrani, F.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

Ankiewicz, A.

Barad, Y.

Buckley, J. R.

Chang, W.

Chong, A.

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32(16), 2408–2410 (2007).
[Crossref] [PubMed]

Dmitriev, A.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

Fu, X. Q.

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber lasers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Hasegawa, A.

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142 (1973).
[Crossref]

Haus, H.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Horowitz, M.

Ilday, F. O.

Ilday, F. Ö.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Ippen, E.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Jeong, Y.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Jones, D.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Komarov, A.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

Komarov, K.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

Kwon, Y.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Lee, S.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber lasers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Nelson, L.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Oktem, B.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Renninger, W.

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[Crossref]

Renninger, W. H.

Sanchez, F.

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

Silberberg, Y.

Sosnowski, T.

Soto-Crespo, J.-M.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber lasers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Tamura, K.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Tang, D. Y.

Tappert, F.

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142 (1973).
[Crossref]

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Vazquez-Zuniga, L. A.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Wen, S. C.

Wise, F.

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[Crossref]

Wise, F. W.

Wu, J.

Wu, X.

Zhang, H.

Zhao, L. M.

Appl. Phys. B (1)

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Appl. Phys. Lett. (1)

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23(3), 142 (1973).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1-2), 58–73 (2008).
[Crossref]

Nat. Photonics (2)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fiber laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Opt. Lett. (5)

Phys. Rev. A (2)

A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, and F. Sanchez, “Competition and coexistence of ultrashort pulses in passive mode-locked lasers under dissipative-soliton-resonance conditions,” Phys. Rev. A 87(2), 023838 (2013).
[Crossref]

W. Chang, A. Ankiewicz, J.-M. Soto-Crespo, and N. N. Akhmediev, “Dissipative soliton resonance,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber lasers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of setup. Red line is start point for every round trip. (b) Transmissivity curve of SA when φ = 0, R0 = 0.2, dR = 0.2 and PA = 150 W. Range of saturable absorption: 0~150 W and 300~450 W; range of reverse saturable absorption: 150~300 W.
Fig. 2
Fig. 2 DS generation at different values of ESat, when R0 = 0.2, dR = 0.2 and PA = 150 W. (a) Time domain. (b) Spectrum.
Fig. 3
Fig. 3 TS generation at different values of ESat, when R0 = 0.2, dR = 0.2 and PA = 150 W. (a) Time domain. (b) Spectrum.
Fig. 4
Fig. 4 DSR generation at different values of ESat, when R0 = 0.2, dR = 0.2 and PA = 150 W. (a) Time domain. Dash lines are the chirp of the pulse. (b) Spectrum.
Fig. 5
Fig. 5 NLP generation when R0 = 0.2, dR = 0.6 and PA = 200 W. (a) single pulse and autocorrelation trace at 1000th round trip. Insert: chirp at 1000th round trip. (b) Spectrum at 1000th round trip. (c) and (d) Temporal and spectral evolution of NLP.
Fig. 6
Fig. 6 NLP generation when R0 = 0.2, dR = 0.6 and PA = 200 W with 4 m anomalous fiber in cavity. (a) Single pulse and autocorrelation trace at 1000th round trip. Insert: chirp at 1000 round trips. (b) Spectrum at 1000th round trip.
Fig. 7
Fig. 7 (a) Pulse and autocorrelation trace after SA. (b) Propagate (a) into 5 m fiber with normal dispersion. (c) Propagate (a) into 5 m fiber with anomalous dispersion.
Fig. 8
Fig. 8 (a) The critical point PA with different dR. Cavity generates DSR pulse when PA is less than the critical point. (b) Mix state of DSR and NLP. Pulse and AC trace at 1000th round trip when R0 = 0.2, dR = 0.6 and PA = 150 W.
Fig. 9
Fig. 9 (a) Transmission curve with different magnitude of fluctuations. (b) Pulses output by utilizing the curve 1, 2 and 3, respectively, when ESat = 4 nJ. (c) Spectrums output by utilizing the curve 1, 2 and 3, respectively, when ESat = 4 nJ. (d) Reducing PA of the curve 5 from 150 W to 75 W.
Fig. 10
Fig. 10 Different transmission curves of SAs and corresponding pulses and AC traces when ESat = 4 nJ. (e)-(h) Pulses and AC traces, when transmission curves in (a)-(d) are utilized, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T= R 0 +dR× sin 2 ( π 2 × P P A +φ).
A z = α 2 A+ + g(ω) 2 A ˜ (ω) e iωt dωi β 2 2 2 A t 2 +iγ | A | 2 A.
g= g 0 1+ E pulse / E Sat .

Metrics