Abstract

In this work the formation of laser-induced periodic surface structures (LIPSS) on a titanium surface upon irradiation by linearly polarized femtosecond (fs) laser pulses with a repetition rate of 1 kHz in air environment was studied experimentally. In particular, the dependence of high-spatial-frequency-LIPSS (HSFL) characteristics on various laser parameters: fluence, pulse number, wavelength (800 nm and 400 nm), pulse duration (10 fs – 550 fs), and polarization was studied in detail. In comparison with low-spatial-frequency-LIPSS (LSFL), the HSFL emerge at a much lower fluence with orientation perpendicular to the ridges of the LSFL. It was observed that these two types of LIPSS demonstrate different fluence, shot number and wavelength dependencies, which suggest their origin is different. Therefore, the HSFL formation mechanism cannot be described by the widely accepted interference model developed for describing LSFL formation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses

Shutong He, Jijil JJ Nivas, Antonio Vecchione, Minglie Hu, and Salvatore Amoruso
Opt. Express 24(4) 3238-3247 (2016)

Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation

Sandra Höhm, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(20) 25959-25971 (2015)

Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes

Weina Han, Lan Jiang, Xiaowei Li, Pengjun Liu, Le Xu, and YongFeng Lu
Opt. Express 21(13) 15505-15513 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Bashir, M. Shahid Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
    [Crossref]
  2. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  3. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  4. E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
    [Crossref]
  5. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  6. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
    [Crossref]
  7. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  8. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Sov. Phys. Usp. 28(12), 1084–1124 (1985).
    [Crossref]
  9. J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in ’t Veld, V. S. Mitko, J. V. Obona, V. Ocelik, and J. T. M. D. Hosson, “Modeling of laser induced periodic surface structures,” J. Laser Micro/nano. Eng. 5(3), 263–268 (2010).
    [Crossref]
  10. A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” J. Exp. Theor. Phys. Lett. 94(4), 266–269 (2011).
    [Crossref]
  11. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
    [Crossref]
  12. J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
    [Crossref]
  13. J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
    [Crossref]
  14. C. Guo, G. Rodriguez, A. Lobad, and A. J. Taylor, “Structural phase transition of aluminum induced by electronic excitation,” Phys. Rev. Lett. 84(19), 4493–4496 (2000).
    [Crossref] [PubMed]
  15. E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
    [Crossref]
  16. X.-F. Li, C.-Y. Zhang, H. Li, Q.-F. Dai, S. Lan, and S.-L. Tie, “Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses,” Opt. Express 22(23), 28086–28099 (2014).
    [Crossref] [PubMed]
  17. K. Bazaka, R. J. Crawford, and E. P. Ivanova, “Do bacteria differentiate between degrees of nanoscale surface roughness?” Biotechnol. J. 6(9), 1103–1114 (2011).
    [Crossref] [PubMed]
  18. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref] [PubMed]
  19. M. Ye and C. P. Grigoropoulos, “Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium,” J. Appl. Phys. 89(9), 5183–5190 (2001).
    [Crossref]
  20. J. Byskov-Nielsen, J.-M. Savolainen, M. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
    [Crossref]
  21. N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
    [Crossref]
  22. M. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
    [Crossref]
  23. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
    [Crossref]
  24. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
    [Crossref]
  25. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
    [Crossref] [PubMed]
  26. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
    [Crossref]
  27. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
    [Crossref]
  28. I. Kudryashov, (private communication, unpublished results).
  29. I. A. Artyukov, D. A. Zayarniy, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, “Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses,” JETP Lett. 99(1), 51–55 (2014).
    [Crossref]
  30. E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys., A Mater. Sci. Process. 106(1), 1–4 (2012).
    [Crossref]
  31. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
    [Crossref]
  32. E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
    [Crossref]
  33. J.-W. Yao, C.-Y. Zhang, H.-Y. Liu, Q.-F. Dai, L.-J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express 20(2), 905–911 (2012).
    [Crossref] [PubMed]
  34. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, Springer, Berlin, 1988, Chapter 1.
  35. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon surface by femtosecond laser radiation,” Sov. Phys. JETP-USSR 116, 347–362 (2013).
    [Crossref]
  36. J.-M. Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B 84(19), 193410 (2011).
    [Crossref]
  37. A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253(17), 7272–7280 (2007).
    [Crossref]
  38. P. B. Johnson, P. W. Gilberd, Y. Morrison, and C. R. Varoy, “Gas-bubble ordering in nanoporous surface formation in helium-implanted metals,” Mod. Phys. Lett. B 15(28n29), 1391–1401 (2001).
    [Crossref]
  39. S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
    [Crossref]
  40. C. Wu and L. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
    [Crossref]

2015 (2)

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
[Crossref]

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref]

2014 (4)

I. A. Artyukov, D. A. Zayarniy, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, “Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses,” JETP Lett. 99(1), 51–55 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

X.-F. Li, C.-Y. Zhang, H. Li, Q.-F. Dai, S. Lan, and S.-L. Tie, “Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses,” Opt. Express 22(23), 28086–28099 (2014).
[Crossref] [PubMed]

C. Wu and L. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

2013 (3)

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon surface by femtosecond laser radiation,” Sov. Phys. JETP-USSR 116, 347–362 (2013).
[Crossref]

2012 (4)

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys., A Mater. Sci. Process. 106(1), 1–4 (2012).
[Crossref]

S. Bashir, M. Shahid Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
[Crossref]

S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
[Crossref]

J.-W. Yao, C.-Y. Zhang, H.-Y. Liu, Q.-F. Dai, L.-J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express 20(2), 905–911 (2012).
[Crossref] [PubMed]

2011 (6)

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

K. Bazaka, R. J. Crawford, and E. P. Ivanova, “Do bacteria differentiate between degrees of nanoscale surface roughness?” Biotechnol. J. 6(9), 1103–1114 (2011).
[Crossref] [PubMed]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” J. Exp. Theor. Phys. Lett. 94(4), 266–269 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

J.-M. Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B 84(19), 193410 (2011).
[Crossref]

2010 (4)

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Byskov-Nielsen, J.-M. Savolainen, M. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

M. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in ’t Veld, V. S. Mitko, J. V. Obona, V. Ocelik, and J. T. M. D. Hosson, “Modeling of laser induced periodic surface structures,” J. Laser Micro/nano. Eng. 5(3), 263–268 (2010).
[Crossref]

2009 (2)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253(17), 7272–7280 (2007).
[Crossref]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

2006 (1)

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

2005 (1)

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
[Crossref]

2003 (2)

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

2001 (2)

M. Ye and C. P. Grigoropoulos, “Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium,” J. Appl. Phys. 89(9), 5183–5190 (2001).
[Crossref]

P. B. Johnson, P. W. Gilberd, Y. Morrison, and C. R. Varoy, “Gas-bubble ordering in nanoporous surface formation in helium-implanted metals,” Mod. Phys. Lett. B 15(28n29), 1391–1401 (2001).
[Crossref]

2000 (1)

C. Guo, G. Rodriguez, A. Lobad, and A. J. Taylor, “Structural phase transition of aluminum induced by electronic excitation,” Phys. Rev. Lett. 84(19), 4493–4496 (2000).
[Crossref] [PubMed]

1985 (1)

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Sov. Phys. Usp. 28(12), 1084–1124 (1985).
[Crossref]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

1982 (1)

Agranat, M. B.

S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
[Crossref]

Akhmanov, S. A.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Sov. Phys. Usp. 28(12), 1084–1124 (1985).
[Crossref]

Anisimov, S. I.

S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
[Crossref]

Artyukov, I. A.

I. A. Artyukov, D. A. Zayarniy, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, “Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses,” JETP Lett. 99(1), 51–55 (2014).
[Crossref]

Ashitkov, S. I.

S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
[Crossref]

Balling, P.

J.-M. Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B 84(19), 193410 (2011).
[Crossref]

J. Byskov-Nielsen, J.-M. Savolainen, M. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

Barmina, E. V.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys., A Mater. Sci. Process. 106(1), 1–4 (2012).
[Crossref]

Bashir, S.

S. Bashir, M. Shahid Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
[Crossref]

Bazaka, K.

K. Bazaka, R. J. Crawford, and E. P. Ivanova, “Do bacteria differentiate between degrees of nanoscale surface roughness?” Biotechnol. J. 6(9), 1103–1114 (2011).
[Crossref] [PubMed]

Bestehorn, M.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

Bonse, J.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Bunkin, A. F.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon surface by femtosecond laser radiation,” Sov. Phys. JETP-USSR 116, 347–362 (2013).
[Crossref]

Byskov-Nielsen, J.

J. Byskov-Nielsen, J.-M. Savolainen, M. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

Chen, X.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

Christensen, M.

J. Byskov-Nielsen, J.-M. Savolainen, M. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

Christensen, M. S.

J.-M. Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B 84(19), 193410 (2011).
[Crossref]

Costache, F.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

Crawford, R. J.

K. Bazaka, R. J. Crawford, and E. P. Ivanova, “Do bacteria differentiate between degrees of nanoscale surface roughness?” Biotechnol. J. 6(9), 1103–1114 (2011).
[Crossref] [PubMed]

Dai, Q.-F.

Emel’yanov, V. I.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
[Crossref]

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Sov. Phys. Usp. 28(12), 1084–1124 (1985).
[Crossref]

Emirov, Y. N.

S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
[Crossref]

Fang, R.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Fortov, V. E.

S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
[Crossref]

Fotakis, C.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys., A Mater. Sci. Process. 106(1), 1–4 (2012).
[Crossref]

Gilberd, P. W.

P. B. Johnson, P. W. Gilberd, Y. Morrison, and C. R. Varoy, “Gas-bubble ordering in nanoporous surface formation in helium-implanted metals,” Mod. Phys. Lett. B 15(28n29), 1391–1401 (2001).
[Crossref]

Golosov, E. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

Gopal, A. V.

Grigoropoulos, C. P.

M. Ye and C. P. Grigoropoulos, “Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium,” J. Appl. Phys. 89(9), 5183–5190 (2001).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253(17), 7272–7280 (2007).
[Crossref]

C. Guo, G. Rodriguez, A. Lobad, and A. J. Taylor, “Structural phase transition of aluminum induced by electronic excitation,” Phys. Rev. Lett. 84(19), 4493–4496 (2000).
[Crossref] [PubMed]

Hashida, M.

M. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Hashimoto, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Herzlieb, M.

Höhm, S.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

Hosson, J. T. M. D.

J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in ’t Veld, V. S. Mitko, J. V. Obona, V. Ocelik, and J. T. M. D. Hosson, “Modeling of laser induced periodic surface structures,” J. Laser Micro/nano. Eng. 5(3), 263–268 (2010).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

Huis in ’t Veld, A. J.

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in ’t Veld, V. S. Mitko, J. V. Obona, V. Ocelik, and J. T. M. D. Hosson, “Modeling of laser induced periodic surface structures,” J. Laser Micro/nano. Eng. 5(3), 263–268 (2010).
[Crossref]

Husinsky, W.

S. Bashir, M. Shahid Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
[Crossref]

Ikuta, Y.

M. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Inogamov, N. A.

S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
[Crossref]

Ionin, A. A.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
[Crossref]

I. A. Artyukov, D. A. Zayarniy, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, “Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses,” JETP Lett. 99(1), 51–55 (2014).
[Crossref]

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon surface by femtosecond laser radiation,” Sov. Phys. JETP-USSR 116, 347–362 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” J. Exp. Theor. Phys. Lett. 94(4), 266–269 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

Ivanova, E. P.

K. Bazaka, R. J. Crawford, and E. P. Ivanova, “Do bacteria differentiate between degrees of nanoscale surface roughness?” Biotechnol. J. 6(9), 1103–1114 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson, P. W. Gilberd, Y. Morrison, and C. R. Varoy, “Gas-bubble ordering in nanoporous surface formation in helium-implanted metals,” Mod. Phys. Lett. B 15(28n29), 1391–1401 (2001).
[Crossref]

Kinoshita, K.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

Kiuchi, J.

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
[Crossref]

Kolobov, Y. R.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

Kolobov, Yu. R.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

Koroteev, N. I.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Sov. Phys. Usp. 28(12), 1084–1124 (1985).
[Crossref]

Krüger, J.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Kudryashov, S. I.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
[Crossref]

I. A. Artyukov, D. A. Zayarniy, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, “Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses,” JETP Lett. 99(1), 51–55 (2014).
[Crossref]

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon surface by femtosecond laser radiation,” Sov. Phys. JETP-USSR 116, 347–362 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” J. Exp. Theor. Phys. Lett. 94(4), 266–269 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

Lan, S.

Lednev, V. N.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon surface by femtosecond laser radiation,” Sov. Phys. JETP-USSR 116, 347–362 (2013).
[Crossref]

Li, H.

Li, X.-F.

Liao, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Ligachev, A. E.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” J. Exp. Theor. Phys. Lett. 94(4), 266–269 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

Liu, H.-Y.

Liu, J. M.

Lobad, A.

C. Guo, G. Rodriguez, A. Lobad, and A. J. Taylor, “Structural phase transition of aluminum induced by electronic excitation,” Phys. Rev. Lett. 84(19), 4493–4496 (2000).
[Crossref] [PubMed]

Lysak, T. M.

Ma, Y.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Makarov, S. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
[Crossref]

I. A. Artyukov, D. A. Zayarniy, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, “Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses,” JETP Lett. 99(1), 51–55 (2014).
[Crossref]

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” J. Exp. Theor. Phys. Lett. 94(4), 266–269 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

Matsuo, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

Mitko, V. S.

J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in ’t Veld, V. S. Mitko, J. V. Obona, V. Ocelik, and J. T. M. D. Hosson, “Modeling of laser induced periodic surface structures,” J. Laser Micro/nano. Eng. 5(3), 263–268 (2010).
[Crossref]

Miyasaka, Y.

M. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Miyazaki, K.

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
[Crossref]

Morrison, Y.

P. B. Johnson, P. W. Gilberd, Y. Morrison, and C. R. Varoy, “Gas-bubble ordering in nanoporous surface formation in helium-implanted metals,” Mod. Phys. Lett. B 15(28n29), 1391–1401 (2001).
[Crossref]

Novoselov, Y. N.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

Obona, J. V.

J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in ’t Veld, V. S. Mitko, J. V. Obona, V. Ocelik, and J. T. M. D. Hosson, “Modeling of laser induced periodic surface structures,” J. Laser Micro/nano. Eng. 5(3), 263–268 (2010).
[Crossref]

Ocelik, V.

J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in ’t Veld, V. S. Mitko, J. V. Obona, V. Ocelik, and J. T. M. D. Hosson, “Modeling of laser induced periodic surface structures,” J. Laser Micro/nano. Eng. 5(3), 263–268 (2010).
[Crossref]

Okamuro, M.

M. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Oleinik, I. I.

S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
[Crossref]

Pershin, S. M.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon surface by femtosecond laser radiation,” Sov. Phys. JETP-USSR 116, 347–362 (2013).
[Crossref]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Reif, J.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

Rodriguez, G.

C. Guo, G. Rodriguez, A. Lobad, and A. J. Taylor, “Structural phase transition of aluminum induced by electronic excitation,” Phys. Rev. Lett. 84(19), 4493–4496 (2000).
[Crossref] [PubMed]

Römer, G. R. B. E.

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in ’t Veld, V. S. Mitko, J. V. Obona, V. Ocelik, and J. T. M. D. Hosson, “Modeling of laser induced periodic surface structures,” J. Laser Micro/nano. Eng. 5(3), 263–268 (2010).
[Crossref]

Rosenfeld, A.

S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation,” Opt. Express 23(1), 61–71 (2015).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Rudenko, A. A.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
[Crossref]

Sakabe, S.

M. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Saltuganov, P. N.

I. A. Artyukov, D. A. Zayarniy, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, “Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses,” JETP Lett. 99(1), 51–55 (2014).
[Crossref]

Savolainen, J.-M.

J.-M. Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B 84(19), 193410 (2011).
[Crossref]

J. Byskov-Nielsen, J.-M. Savolainen, M. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

Seleznev, L. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
[Crossref]

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon surface by femtosecond laser radiation,” Sov. Phys. JETP-USSR 116, 347–362 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” J. Exp. Theor. Phys. Lett. 94(4), 266–269 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

Seminogov, V. N.

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Sov. Phys. Usp. 28(12), 1084–1124 (1985).
[Crossref]

Serkov, A. A.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys., A Mater. Sci. Process. 106(1), 1–4 (2012).
[Crossref]

Shafeev, G. A.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys., A Mater. Sci. Process. 106(1), 1–4 (2012).
[Crossref]

Shahid Rafique, M.

S. Bashir, M. Shahid Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
[Crossref]

Sharipov, A. R.

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

Sinitsyn, D. V.

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
[Crossref]

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon surface by femtosecond laser radiation,” Sov. Phys. JETP-USSR 116, 347–362 (2013).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” J. Exp. Theor. Phys. Lett. 94(4), 266–269 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Skolski, J. Z. P.

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in ’t Veld, V. S. Mitko, J. V. Obona, V. Ocelik, and J. T. M. D. Hosson, “Modeling of laser induced periodic surface structures,” J. Laser Micro/nano. Eng. 5(3), 263–268 (2010).
[Crossref]

Stolyarov, I. N.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys., A Mater. Sci. Process. 106(1), 1–4 (2012).
[Crossref]

Stolyarov, V. N.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys., A Mater. Sci. Process. 106(1), 1–4 (2012).
[Crossref]

Stratakis, E.

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys., A Mater. Sci. Process. 106(1), 1–4 (2012).
[Crossref]

Taylor, A. J.

C. Guo, G. Rodriguez, A. Lobad, and A. J. Taylor, “Structural phase transition of aluminum induced by electronic excitation,” Phys. Rev. Lett. 84(19), 4493–4496 (2000).
[Crossref] [PubMed]

Tie, S.-L.

Tokita, S.

M. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

Tomita, T.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

Trofimov, V. A.

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Varlamova, O.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

Varoy, C. R.

P. B. Johnson, P. W. Gilberd, Y. Morrison, and C. R. Varoy, “Gas-bubble ordering in nanoporous surface formation in helium-implanted metals,” Mod. Phys. Lett. B 15(28n29), 1391–1401 (2001).
[Crossref]

Vincenc Obona, J.

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253(17), 7272–7280 (2007).
[Crossref]

Wang, K.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Wu, C.

C. Wu and L. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

Wu, L.-J.

Wu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

Yao, J.-W.

Yasumaru, N.

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
[Crossref]

Ye, M.

M. Ye and C. P. Grigoropoulos, “Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium,” J. Appl. Phys. 89(9), 5183–5190 (2001).
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Yu, Q.

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

Zayarniy, D. A.

I. A. Artyukov, D. A. Zayarniy, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, “Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses,” JETP Lett. 99(1), 51–55 (2014).
[Crossref]

Zhakhovskii, V. V.

S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
[Crossref]

Zhang, C.-Y.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

Zhigilei, L.

C. Wu and L. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, and K. Wang, “Femtosecond laser-induced periodic surface structure on diamond film,” Appl. Phys. Lett. 82(11), 1703–1705 (2003).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (5)

E. V. Barmina, A. A. Serkov, E. Stratakis, C. Fotakis, V. N. Stolyarov, I. N. Stolyarov, and G. A. Shafeev, “Nano-textured W shows improvement of thermionic emission properties,” Appl. Phys., A Mater. Sci. Process. 106(1), 1–4 (2012).
[Crossref]

J. Bonse, S. Höhm, A. Rosenfeld, and J. Krüger, “Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air,” Appl. Phys., A Mater. Sci. Process. 110(3), 547–551 (2013).
[Crossref]

J. Byskov-Nielsen, J.-M. Savolainen, M. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys., A Mater. Sci. Process. 101(1), 97–101 (2010).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
[Crossref]

C. Wu and L. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

Appl. Surf. Sci. (2)

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252(13), 4702–4706 (2006).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser structuring of titanium implants,” Appl. Surf. Sci. 253(17), 7272–7280 (2007).
[Crossref]

Biotechnol. J. (1)

K. Bazaka, R. J. Crawford, and E. P. Ivanova, “Do bacteria differentiate between degrees of nanoscale surface roughness?” Biotechnol. J. 6(9), 1103–1114 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (4)

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

M. Ye and C. P. Grigoropoulos, “Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium,” J. Appl. Phys. 89(9), 5183–5190 (2001).
[Crossref]

J. Z. P. Skolski, G. R. B. E. Römer, J. Vincenc Obona, and A. J. Huis in ’t Veld, “Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations,” J. Appl. Phys. 115(10), 103102 (2014).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Exp. Theor. Phys. Lett. (1)

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” J. Exp. Theor. Phys. Lett. 94(4), 266–269 (2011).
[Crossref]

J. Laser Micro/nano. Eng. (1)

J. Z. P. Skolski, G. R. B. E. Römer, A. J. Huis in ’t Veld, V. S. Mitko, J. V. Obona, V. Ocelik, and J. T. M. D. Hosson, “Modeling of laser induced periodic surface structures,” J. Laser Micro/nano. Eng. 5(3), 263–268 (2010).
[Crossref]

JETP Lett. (2)

S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, I. I. Oleinik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” JETP Lett. 95(4), 176–181 (2012).
[Crossref]

I. A. Artyukov, D. A. Zayarniy, A. A. Ionin, S. I. Kudryashov, S. V. Makarov, and P. N. Saltuganov, “Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses,” JETP Lett. 99(1), 51–55 (2014).
[Crossref]

Laser Phys. Lett. (2)

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, A. A. Rudenko, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, “Nonlinear optical dynamics during femtosecond laser nanostructuring of a silicon surface,” Laser Phys. Lett. 12(2), 025902 (2015).
[Crossref]

A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. E. Ligachev, E. V. Golosov, and Yu. R. Kolobov, “Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface,” Laser Phys. Lett. 10(5), 056004 (2013).
[Crossref]

Mod. Phys. Lett. B (1)

P. B. Johnson, P. W. Gilberd, Y. Morrison, and C. R. Varoy, “Gas-bubble ordering in nanoporous surface formation in helium-implanted metals,” Mod. Phys. Lett. B 15(28n29), 1391–1401 (2001).
[Crossref]

Nanotechnol. Russ. (1)

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses,” Nanotechnol. Russ. 6(3-4), 237–243 (2011).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

S. Bashir, M. Shahid Rafique, and W. Husinsky, “Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39,” Nucl. Instrum. Methods Phys. Res. B 275, 1–6 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (4)

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, “Near-threshold femtosecond laser fabrication of one-dimensional subwavelength nanogratings on a graphite surface,” Phys. Rev. B 83(11), 115426 (2011).
[Crossref]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

M. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[Crossref]

J.-M. Savolainen, M. S. Christensen, and P. Balling, “Material swelling as the first step in the ablation of metals by ultrashort laser pulses,” Phys. Rev. B 84(19), 193410 (2011).
[Crossref]

Phys. Rev. Lett. (1)

C. Guo, G. Rodriguez, A. Lobad, and A. J. Taylor, “Structural phase transition of aluminum induced by electronic excitation,” Phys. Rev. Lett. 84(19), 4493–4496 (2000).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Novoselov, L. V. Seleznev, and D. V. Sinitsyn, “Ultrafast changes in the optical properties of a titanium surface and femtosecond laser writing of one-dimensional quasi-periodic nanogratings of its relief,” Sov. Phys. JETP 113(1), 14–26 (2011).
[Crossref]

Sov. Phys. JETP-USSR (1)

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon surface by femtosecond laser radiation,” Sov. Phys. JETP-USSR 116, 347–362 (2013).
[Crossref]

Sov. Phys. Usp. (1)

S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, “Interaction of powerful laser radiation with the surfaces of semiconductors and metals: nonlinear optical effects and nonlinear optical diagnostics,” Sov. Phys. Usp. 28(12), 1084–1124 (1985).
[Crossref]

Other (2)

I. Kudryashov, (private communication, unpublished results).

H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, Springer, Berlin, 1988, Chapter 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 SEM micrographs of a titanium film surface after irradiation by IR fs-laser pulses (l = 800 nm, t = 30 fs, u = 1 kHz) in the scanning mode with scanning speed of 0.2 mm/s (N ≈220) at various fluence values. The double-headed arrow indicates the direction of the laser beam polarization.
Fig. 2
Fig. 2 Dependence of (a) HSFL and (b) LSFL periodicity on Fluence, formed on a titanium film surface when irradiated with t = 30 fs pulses and (a) V = 0.2 mm/s (N ≈220) (b) V = 0.6 mm/s (N ≈36).
Fig. 3
Fig. 3 SEM micrographs of titanium film irradiated by IR fs-laser pulses at F = 42 mJ/cm2, t = 30 fs, with scan speed (pulse number) variation in the range 0.2 mm/s – 2.5 mm/s (N = 17 - 220). The double-headed arrow indicates the direction of the laser beam polarization.
Fig. 4
Fig. 4 SEM micrographs of titanium film irradiated by IR fs-laser pulses at F = 65 mJ/cm2, t = 30 fs, with scanning speed/pulse number variation range 0.4 mm/s – 1.5 mm/s (N = 55 - 15). The double-headed arrow indicates the direction of the laser beam polarization.
Fig. 5
Fig. 5 Dependence of (a) HSFL and (b) LSFL periodicity on scanning speed (pulse number) formed on a titanium film surface when irradiated with t = 30 fs pulses and (a) F = 42 mJ/cm2 (b) F = 65 mJ/cm2.
Fig. 6
Fig. 6 SEM micrographs of HSFL on titanium film surface when irradiated by IR fs-laser pulses with F ≈42 mJ/cm2 and scan speed of 0.2 mm/s (N ≈220) of different pulse durations. The double-headed arrow indicates the direction of the laser beam polarization.
Fig. 7
Fig. 7 AFM images of titanium film (a) unexposed area, (b) 2D image of nano-ripples (c) 3D image of nano-ripples (d) Height profile of nano-ripples, after irradiating by IR fs-laser pulses with F = 36 mJ/cm2, t = 30 fs, N ≈220.
Fig. 8
Fig. 8 SEM micrographs of LSFL on titanium film surface when irradiated by IR fs-laser pulses with F ≈65 mJ/cm2 and scan speed of 0.6 mm/s (N ≈36) at different pulse durations. The double-headed arrow indicates the direction of the laser beam polarization.
Fig. 9
Fig. 9 Periodicity dependence of HSFL (black dots, left axis) and LSFL (blue dots, right axis) on pulse duration on a titanium film surface in scanning mode with: N ≈220, F = 42 mJ/cm2 for HSFL and N ≈36, F = 65 mJ/cm2 for LSFL.
Fig. 10
Fig. 10 SEM micrographs of (a) LSFL and (b) HSFL formed on a titanium film surface after irradiation with l = 400 nm, F = 25 mJ/cm2, N ≈220, t ~30 fs pulses. The double-headed arrow indicates the direction of the laser beam polarization.
Fig. 11
Fig. 11 SEM micrographs of HSFL formed on a titanium film after irradiation with IR laser pulses with F = 36 mJ/cm2, N ≈220, t = 30 fs. The double-headed arrow indicates the direction of the laser beam polarization. The corresponding 2D Fourier transformations of SEM micrographs are shown in the insets.
Fig. 12
Fig. 12 SEM micrographs of HSFL on bulk titanium surface when irradiated by 30 fs IR laser pulses with (a, b) F ≈60 mJ/cm2, N = 70 (c) F ≈80 mJ/cm2, N = 20 (d) un-exposed area. The double-headed arrow indicates the direction of the laser beam polarization.
Fig. 13
Fig. 13 SEM micrographs of HSFL on bulk titanium surface when irradiated by 30 fs IR laser pulses with F ≈80 mJ/cm2, N = 5. The double-headed arrow indicates the direction of the laser beam polarization.

Tables (1)

Tables Icon

Table 1 Main dependences of LIPPS period on laser parameters.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F= 2E e (2 r 2 / w 0 2 ) π w 0 2
d λ 2π ε m + ε d ε m 2 ,
D λ 2π ε m + ε d ε d 2 .

Metrics