Abstract

In this paper, a novel flexible inkjet-printed metamaterial absorber is proposed. The unit cell of the metamaterial is designed with a modified Jerusalem-cross ring resonator and is inkjet printed with silver nanoparticle ink on a flexible polymer film. All fabrication processes are performed using a commercial printer (EPSON WF-7011). The absorber’s flexibility and absorption performance are demonstrated by measuring the absorption ratio after coating the proposed absorber on a cylindrical object with a radius of 4.56 cm. An absorption rate exceeding 99% is achieved at 9.21 GHz for both flat and cylindrical surfaces. In addition, the cylindrical model attains an absorption rate higher than 96% for all polarization angles, and a high absorption rate of 95% is preserved until the incident angle is less than 30þ.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microfluidic tunable inkjet-printed metamaterial absorber on paper

Kenyu Ling, Minyeong Yoo, Wenjing Su, Kyeongseob Kim, Benjamin Cook, Manos M. Tentzeris, and Sungjoon Lim
Opt. Express 23(1) 110-120 (2015)

Inkjet-printing of graphene saturable absorbers for ~2 μm bulk and waveguide lasers

Pavel Loiko, Josep Maria Serres, Szymon Sollami Delekta, Esrom Kifle, Jakub Bogusławski, Maciej Kowalczyk, Jarosław Sotor, Magdalena Aguiló, Francesc Díaz, Uwe Griebner, Valentin Petrov, Sergei Popov, Jiantong Li, Xavier Mateos, and Mikael Östling
Opt. Mater. Express 8(9) 2803-2814 (2018)

Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS)

Kenyu Ling, Kyeoungseob Kim, and Sungjoon Lim
Opt. Express 23(16) 21375-21383 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
    [Crossref]
  2. Y. Takimoto, Considerations on millimeter-wave indoor LAN” in Millimeter Waves, 1997 Topical Symposium on Anonymous (IEEE, 1997).
  3. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
    [Crossref] [PubMed]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  5. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
    [Crossref]
  6. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. THz Waves 32(5), 580–595 (2011).
    [Crossref]
  7. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  8. H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
    [Crossref]
  9. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  11. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  12. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
    [Crossref]
  13. Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
    [Crossref]
  14. B. S. Cook and A. Shamim, “Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,” IEEE Trans. Antennas Propagat. 60(9), 4148–4156 (2012).
    [Crossref]
  15. K. Latti, M. Kettunen, J. Strom, and P. Silventoinen, “A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials,” IEEE Trans. Instrum. Meas. 56(5), 1845–1850 (2007).
    [Crossref]
  16. Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
    [Crossref]
  17. E. Pshenay-Severin, M. Falkner, C. Helgert, and T. Pertsch, “Ultra broadband phase measurements on nanostructured metasurfaces,” Appl. Phys. Lett. 104(22), 221906 (2014).
    [Crossref]
  18. B. Kanté, J. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
    [Crossref]
  19. H. Chen, J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, “Experimental retrieval of the effective parameters of metamaterials based on a waveguide method,” Opt. Express 14(26), 12944–12949 (2006).
    [Crossref] [PubMed]
  20. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  21. Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, and J. Tian, “Planar metamaterial microwave absorber for all wave polarizations,” Chin. Phys. Lett. 26(11), 114102 (2009).
    [Crossref]
  22. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
    [Crossref]

2014 (1)

E. Pshenay-Severin, M. Falkner, C. Helgert, and T. Pertsch, “Ultra broadband phase measurements on nanostructured metasurfaces,” Appl. Phys. Lett. 104(22), 221906 (2014).
[Crossref]

2012 (3)

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
[Crossref]

B. S. Cook and A. Shamim, “Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,” IEEE Trans. Antennas Propagat. 60(9), 4148–4156 (2012).
[Crossref]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

2011 (3)

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[Crossref]

2010 (6)

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

2009 (3)

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

B. Kanté, J. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, and J. Tian, “Planar metamaterial microwave absorber for all wave polarizations,” Chin. Phys. Lett. 26(11), 114102 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

K. Latti, M. Kettunen, J. Strom, and P. Silventoinen, “A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials,” IEEE Trans. Instrum. Meas. 56(5), 1845–1850 (2007).
[Crossref]

2006 (1)

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Afsar, M. N.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Averitt, R.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

Averitt, R. D.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

Bai, G.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Bai, Y.

Bingham, C.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Bo, Z.

Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, and J. Tian, “Planar metamaterial microwave absorber for all wave polarizations,” Chin. Phys. Lett. 26(11), 114102 (2009).
[Crossref]

Chen, H.

Chen, Y.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Chen, Z.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
[Crossref]

Cheng, Y.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[Crossref]

Cheng, Z.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[Crossref]

Cook, B. S.

B. S. Cook and A. Shamim, “Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,” IEEE Trans. Antennas Propagat. 60(9), 4148–4156 (2012).
[Crossref]

de Lustrac, A.

B. Kanté, J. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Du, F.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Falkner, M.

E. Pshenay-Severin, M. Falkner, C. Helgert, and T. Pertsch, “Ultra broadband phase measurements on nanostructured metasurfaces,” Appl. Phys. Lett. 104(22), 221906 (2014).
[Crossref]

Fan, K.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

Feng, Y.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Guo, T.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Helgert, C.

E. Pshenay-Severin, M. Falkner, C. Helgert, and T. Pertsch, “Ultra broadband phase measurements on nanostructured metasurfaces,” Appl. Phys. Lett. 104(22), 221906 (2014).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Huang, C.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

Huang, Y.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Iwaszczuk, K.

Jepsen, P. U.

Jiang, Q.

Jiang, T.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

Jing, Y.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
[Crossref]

Jokerst, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Jun-Ming, Z.

Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, and J. Tian, “Planar metamaterial microwave absorber for all wave polarizations,” Chin. Phys. Lett. 26(11), 114102 (2009).
[Crossref]

Kanté, B.

B. Kanté, J. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Kettunen, M.

K. Latti, M. Kettunen, J. Strom, and P. Silventoinen, “A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials,” IEEE Trans. Instrum. Meas. 56(5), 1845–1850 (2007).
[Crossref]

Kong, J. A.

Korolev, K. A.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Landy, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Latti, K.

K. Latti, M. Kettunen, J. Strom, and P. Silventoinen, “A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials,” IEEE Trans. Instrum. Meas. 56(5), 1845–1850 (2007).
[Crossref]

Li, F.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Lin, Y.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Z.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Long, Y.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
[Crossref]

Lourtioz, J.

B. Kanté, J. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Luo, Y.

Ma, Y.

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Padilla, W.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Padilla, W. J.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pertsch, T.

E. Pshenay-Severin, M. Falkner, C. Helgert, and T. Pertsch, “Ultra broadband phase measurements on nanostructured metasurfaces,” Appl. Phys. Lett. 104(22), 221906 (2014).
[Crossref]

Pilon, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

Pshenay-Severin, E.

E. Pshenay-Severin, M. Falkner, C. Helgert, and T. Pertsch, “Ultra broadband phase measurements on nanostructured metasurfaces,” Appl. Phys. Lett. 104(22), 221906 (2014).
[Crossref]

Qi, Z.

Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, and J. Tian, “Planar metamaterial microwave absorber for all wave polarizations,” Chin. Phys. Lett. 26(11), 114102 (2009).
[Crossref]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Ran, L.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Shamim, A.

B. S. Cook and A. Shamim, “Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,” IEEE Trans. Antennas Propagat. 60(9), 4148–4156 (2012).
[Crossref]

Shrekenhamer, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

Silventoinen, P.

K. Latti, M. Kettunen, J. Strom, and P. Silventoinen, “A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials,” IEEE Trans. Instrum. Meas. 56(5), 1845–1850 (2007).
[Crossref]

Singh, P. K.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Smith, D.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Sonkusale, S.

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Strikwerda, A.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

Strikwerda, A. C.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

Strom, J.

K. Latti, M. Kettunen, J. Strom, and P. Silventoinen, “A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials,” IEEE Trans. Instrum. Meas. 56(5), 1845–1850 (2007).
[Crossref]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

Tian, J.

Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, and J. Tian, “Planar metamaterial microwave absorber for all wave polarizations,” Chin. Phys. Lett. 26(11), 114102 (2009).
[Crossref]

Tyler, T.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, Z.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, Q.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
[Crossref]

Wu, N.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[Crossref]

Yang, H.

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[Crossref]

Yang, Q.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
[Crossref]

Yi-Jun, F.

Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, and J. Tian, “Planar metamaterial microwave absorber for all wave polarizations,” Chin. Phys. Lett. 26(11), 114102 (2009).
[Crossref]

Zhang, H.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
[Crossref]

Zhang, J.

Zhang, P.

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
[Crossref]

Zhang, X.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

Zhao, J.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

Zheng-Bin, W.

Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, and J. Tian, “Planar metamaterial microwave absorber for all wave polarizations,” Chin. Phys. Lett. 26(11), 114102 (2009).
[Crossref]

Zhen-Zhong, Y.

Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, and J. Tian, “Planar metamaterial microwave absorber for all wave polarizations,” Chin. Phys. Lett. 26(11), 114102 (2009).
[Crossref]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhu, B.

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

Appl. Phys. Lett. (3)

P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, “Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate,” Appl. Phys. Lett. 99(26), 264101 (2011).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

E. Pshenay-Severin, M. Falkner, C. Helgert, and T. Pertsch, “Ultra broadband phase measurements on nanostructured metasurfaces,” Appl. Phys. Lett. 104(22), 221906 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Cheng, H. Yang, Z. Cheng, and N. Wu, “Perfect metamaterial absorber based on a split-ring-cross resonator,” Appl. Phys., A Mater. Sci. Process. 102(1), 99–103 (2011).
[Crossref]

Carbon (1)

Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites,” Carbon 45(4), 821–827 (2007).
[Crossref]

Chin. Phys. Lett. (1)

Z. Bo, W. Zheng-Bin, Y. Zhen-Zhong, Z. Qi, Z. Jun-Ming, F. Yi-Jun, and J. Tian, “Planar metamaterial microwave absorber for all wave polarizations,” Chin. Phys. Lett. 26(11), 114102 (2009).
[Crossref]

IEEE Trans. Antennas Propagat. (1)

B. S. Cook and A. Shamim, “Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,” IEEE Trans. Antennas Propagat. 60(9), 4148–4156 (2012).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

K. Latti, M. Kettunen, J. Strom, and P. Silventoinen, “A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials,” IEEE Trans. Instrum. Meas. 56(5), 1845–1850 (2007).
[Crossref]

J. Infrared Millim. THz Waves (1)

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “MEMS based structurally tunable metamaterials at terahertz frequencies,” J. Infrared Millim. THz Waves 32(5), 580–595 (2011).
[Crossref]

J. Phys. D (2)

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43(22), 225102 (2010).
[Crossref]

Q. Wen, H. Zhang, Q. Yang, Z. Chen, Y. Long, Y. Jing, Y. Lin, and P. Zhang, “A tunable hybrid metamaterial absorber based on vanadium oxide films,” J. Phys. D 45(23), 235106 (2012).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B (2)

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

B. Kanté, J. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (2)

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Polarization insensitive metamaterial absorber with wide incident angle,” Prog. Electromagnetics Res. 101, 231–239 (2010).
[Crossref]

Other (1)

Y. Takimoto, Considerations on millimeter-wave indoor LAN” in Millimeter Waves, 1997 Topical Symposium on Anonymous (IEEE, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Unit cell of the proposed absorber with a = 4.7 mm, b = 6.5 mm, c = 1.11 mm, d = 2.3 mm, e = 0.75 mm, f = 0.75 mm, and g = 0.62 mm.
Fig. 2
Fig. 2 SEM images (a) before sintering and (b) after sintering; (c) the fabricated sample absorber coated on a PET cylinder and a microphotograph of the sample absorber.
Fig. 3
Fig. 3 Microscopic images of the inkjet-printed (a) line and (b) gap on the film substrate.
Fig. 4
Fig. 4 (a) Primitive ring resonator, (b) proposed ring resonator (a = 4.7 mm, b = 6.5 mm, c = 1.11 mm, d = 2.3 mm, e = 0.75 mm, f = 0.75 mm, g = 0.62 mm, and α = 10þ), (c) simulated reflection coefficients of (a) and (b), and (d) reflection coefficients of the proposed unit cell when a is 3.7 mm, 4.2 mm, and 4.7 mm.
Fig. 5
Fig. 5 Normalized impedance of the proposed metamaterial absorber versus frequency.
Fig. 6
Fig. 6 (a) Simulated electric field distribution, (b) vector current density, and (c) volume loss density in the proposed absorber.
Fig. 7
Fig. 7 Experimental setup for measurements.
Fig. 8
Fig. 8 Numerical simulation and measured results for a vertical polarized wave.
Fig. 9
Fig. 9 (a) Measured absorption rates for different polarization angles (φ is varied from 0þ to 90þ) and (b) different incident angles (θ is varied from 0þ to 90þ).

Tables (1)

Tables Icon

Table 1 Comparison of the proposed inkjet-printed metamaterial performances with other technology

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε r =n/η, μ r =nη
n= 1 kg cos 1 [ 1 2 S 21 (1 S 11 2 + S 21 2 ) ]
η= (1+ S 11 ) 2 S 21 2 (1 S 11 ) 2 S 21 2 ,
A(ω)=1R(ω)T(ω)

Metrics