Abstract

In this paper, we present one dimensional plasmonic narrow groove nano-gratings, covered with a thin film of VO2 (Vanadium Dioxide), as novel optical switches. These narrow groove gratings couple the incident optical radiation to plasmonic waveguide modes leading to high electromagnetic fields in the gaps between the nano-gratings. Since VO2 changes from its semiconductor to its metallic phase on heating, on exposure to infra-red light, or on application of voltage, the optical properties of the underlying plasmonic grating also get altered during this phase transition, thereby resulting in significant switchability of the reflectance spectra. Moreover, as the phase transition in VO2 can occur at femto-second time-scales, the VO2-coated plasmonic optical switch described in this paper can potentially be employed for ultrafast optical switching. We aim at maximizing this switchability, i.e., maximizing the differential reflectance (DR) between the two states (metallic and semiconductor) of this VO2 coated nano-grating. Rigorous Coupled Wave Analysis (RCWA) reveals that the switching wavelengths ― i.e., the wavelengths at which the values of the differential reflectance between VO2 (S) and VO2 (M) phases are maximum ― can be tuned over a large spectral regime by varying the nano-grating parameters such as groove width, depth of the narrow groove, grating width, and thickness of the VO2 layer. A comparison of the proposed ideal nano-gratings with various types of non-ideal nano-gratings ― i.e., nano-gratings with non-parallel sidewalls ― has also been carried out. It is found that significant switchability is also present for these non-ideal gratings that are easy to fabricate. Thus, we propose highly switchable and wide-spectra VO2 based narrow groove nano-gratings that do not have a complex structure and can be easily fabricated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Au nanowire-VO2 spacer-Au film based optical switches

Arun Thomas, Priten Savaliya, Kamal Kumar, Akanksha Ninawe, and Anuj Dhawan
J. Opt. Soc. Am. B 35(7) 1687-1697 (2018)

Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing

Anuj Dhawan, Michael Canva, and Tuan Vo-Dinh
Opt. Express 19(2) 787-813 (2011)

Dual-functional sensor based on switchable plasmonic structure of VO2 nano-crystal films and Ag nanoparticles

Mingfang Yi, Changgui Lu, Yan Gong, Zhengqing Qi, and Yiping Cui
Opt. Express 22(24) 29627-29635 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d Alessandro, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
    [Crossref]
  2. Q. Wang and J. Yao, “A high speed 2x2 electro-optic switch using a polarization modulator,” Opt. Express 15(25), 16500–16505 (2007).
    [Crossref] [PubMed]
  3. N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Opt. 37(14), 2831–2842 (1998).
    [Crossref] [PubMed]
  4. X. Ma and G. S. Kuo, “Optical Switching Technology Comparison: Optical MEMS vs. other technologies,” Communications Magazine, IEEE. 41, S16–S23 (2003).
  5. H. Wang, X. Yi, S. Chen, and X. Fu, “Fabrication of vanadium oxide micro-optical switches,” Sens. Actuators A Phys. 122(1), 108–112 (2005).
    [Crossref]
  6. P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
    [Crossref]
  7. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
    [Crossref] [PubMed]
  8. E. E. Chain, “Optical properties of vanadium dioxide and vanadium pentoxide thin films,” Appl. Opt. 30(19), 2782–2787 (1991).
    [Crossref] [PubMed]
  9. M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced Phase Transition in VO2 Nanocrystals: Ultrafast Control of Surface-Plasmon Resonance,” Opt. Lett. 30(5), 558–560 (2005).
    [Crossref] [PubMed]
  10. Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utlilizing ultrafast metal insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
    [Crossref]
  11. J. Sapriel, V. Y. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
    [Crossref]
  12. A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express 19(2), 787–813 (2011).
    [Crossref] [PubMed]
  13. T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
    [Crossref]
  14. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
    [Crossref]
  15. F. J. Garcıa-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rıos, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
    [Crossref]
  16. F. J. Garcıa-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. Lett. 66, 155412 (2002).
  17. A. Wirgin and A. A. Maradudin, “Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light p-polarized light,” Phys. Rev. B 31(8), R5573 (1985).
    [Crossref]
  18. A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, “Resonant response of a bare metallic grating to s-polarized light,” Opt. Commun. 135, 352 (1997).
    [Crossref]
  19. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
    [Crossref]
  20. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [Crossref]
  21. Ch. Leroux, G. Nihoul, and G. V. Tendeloo, “From VO2(B) to VO2(R): theoretical structures of VO2 polymorphs and in situ electron microscopy,” Phys. Rev. B 57(9), 5111–5121 (1998).
    [Crossref]
  22. G. A. Rozgonyi and D. H. Hensler, “Structural and electrical properties of vanadium dioxide thin films,” J. Vac. Sci. Technol. 5(6), 194–199 (1968).
    [Crossref]
  23. M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
    [Crossref]
  24. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
    [Crossref] [PubMed]
  25. A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J. C. Orlianges, and P. Blondy, “Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
    [Crossref]
  26. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
    [Crossref]
  27. C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008).
    [Crossref]
  28. J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
    [Crossref]
  29. H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, A. J. Rua, and F. E. Fernandez, “Novel Pulsed-Laser-Deposition- VO2 Thin Films for Ultrafast Applications,” J. Electron. Mater. 34(5), 491–496 (2005).
    [Crossref]
  30. M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
    [Crossref]
  31. M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
    [Crossref] [PubMed]
  32. S. Y. Chou, P. R. Krauss, W. Zhang, Z. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
    [Crossref]
  33. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
    [Crossref] [PubMed]
  34. T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
    [Crossref]
  35. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd ed. (Artech House, Boston, MA, 2000).
  36. S. R. Barone, M. A. Narcowich, and F. J. Narcowich, “Floquet theory and applications,” Phys. Rev. A 15(3), 1109–1125 (1977).
    [Crossref]
  37. A. Dhawan, M. Canva, and T. Vo-Dinh, “Bimodal behavior and isobestic transition pathway in surface plasmon resonance sensing,” Opt. Express 20(21), 23630–23642 (2012).
    [Crossref] [PubMed]
  38. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  39. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]
  40. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Verlag, 1988).
  41. S. Kim, Y. Xuan, V. P. Drachev, L. T. Varghese, L. Fan, M. Qi, and K. J. Webb, “Nanoimprinted plasmonic nanocavity arrays,” Opt. Express 21(13), 15081–15089 (2013).
    [Crossref] [PubMed]
  42. H. N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15(16), 6008–6015 (2013).
    [Crossref] [PubMed]

2013 (3)

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

S. Kim, Y. Xuan, V. P. Drachev, L. T. Varghese, L. Fan, M. Qi, and K. J. Webb, “Nanoimprinted plasmonic nanocavity arrays,” Opt. Express 21(13), 15081–15089 (2013).
[Crossref] [PubMed]

H. N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15(16), 6008–6015 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utlilizing ultrafast metal insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express 19(2), 787–813 (2011).
[Crossref] [PubMed]

2010 (2)

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J. C. Orlianges, and P. Blondy, “Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

2008 (1)

C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008).
[Crossref]

2007 (2)

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Q. Wang and J. Yao, “A high speed 2x2 electro-optic switch using a polarization modulator,” Opt. Express 15(25), 16500–16505 (2007).
[Crossref] [PubMed]

2006 (1)

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[Crossref]

2005 (4)

H. Wang, X. Yi, S. Chen, and X. Fu, “Fabrication of vanadium oxide micro-optical switches,” Sens. Actuators A Phys. 122(1), 108–112 (2005).
[Crossref]

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced Phase Transition in VO2 Nanocrystals: Ultrafast Control of Surface-Plasmon Resonance,” Opt. Lett. 30(5), 558–560 (2005).
[Crossref] [PubMed]

J. Sapriel, V. Y. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[Crossref]

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, A. J. Rua, and F. E. Fernandez, “Novel Pulsed-Laser-Deposition- VO2 Thin Films for Ultrafast Applications,” J. Electron. Mater. 34(5), 491–496 (2005).
[Crossref]

2004 (1)

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

2003 (1)

X. Ma and G. S. Kuo, “Optical Switching Technology Comparison: Optical MEMS vs. other technologies,” Communications Magazine, IEEE. 41, S16–S23 (2003).

2002 (2)

F. J. Garcıa-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. Lett. 66, 155412 (2002).

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

2001 (1)

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

2000 (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

1999 (2)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

F. J. Garcıa-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rıos, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[Crossref]

1998 (6)

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

N. S. Patel, K. L. Hall, and K. A. Rauschenbach, “Interferometric all-optical switches for ultrafast signal processing,” Appl. Opt. 37(14), 2831–2842 (1998).
[Crossref] [PubMed]

Ch. Leroux, G. Nihoul, and G. V. Tendeloo, “From VO2(B) to VO2(R): theoretical structures of VO2 polymorphs and in situ electron microscopy,” Phys. Rev. B 57(9), 5111–5121 (1998).
[Crossref]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

1997 (2)

S. Y. Chou, P. R. Krauss, W. Zhang, Z. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, “Resonant response of a bare metallic grating to s-polarized light,” Opt. Commun. 135, 352 (1997).
[Crossref]

1996 (1)

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d Alessandro, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[Crossref]

1994 (1)

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

1991 (1)

1985 (1)

A. Wirgin and A. A. Maradudin, “Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light p-polarized light,” Phys. Rev. B 31(8), R5573 (1985).
[Crossref]

1977 (1)

S. R. Barone, M. A. Narcowich, and F. J. Narcowich, “Floquet theory and applications,” Phys. Rev. A 15(3), 1109–1125 (1977).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1968 (2)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

G. A. Rozgonyi and D. H. Hensler, “Structural and electrical properties of vanadium dioxide thin films,” J. Vac. Sci. Technol. 5(6), 194–199 (1968).
[Crossref]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Aubin, G.

J. Sapriel, V. Y. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[Crossref]

Bantz, K. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Bao, Z.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d Alessandro, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[Crossref]

Baran, J. E.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d Alessandro, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[Crossref]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Barone, S. R.

S. R. Barone, M. A. Narcowich, and F. J. Narcowich, “Floquet theory and applications,” Phys. Rev. A 15(3), 1109–1125 (1977).
[Crossref]

Batchelor, D.

H. N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15(16), 6008–6015 (2013).
[Crossref] [PubMed]

Beck, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Becker, M. F.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Blanquart, T.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Blondy, P.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J. C. Orlianges, and P. Blondy, “Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Boatner, L. A.

Brun, A.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Buckman, A. B.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Bustarret, E.

Canva, M.

Cavalleri, A.

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced Phase Transition in VO2 Nanocrystals: Ultrafast Control of Surface-Plasmon Resonance,” Opt. Lett. 30(5), 558–560 (2005).
[Crossref] [PubMed]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Chain, E. E.

Chakravarthy, R. S.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d Alessandro, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[Crossref]

Champeaux, C.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J. C. Orlianges, and P. Blondy, “Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Chen, S.

H. Wang, X. Yi, S. Chen, and X. Fu, “Fabrication of vanadium oxide micro-optical switches,” Sens. Actuators A Phys. 122(1), 108–112 (2005).
[Crossref]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, W. Zhang, Z. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Crunteanu, A.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J. C. Orlianges, and P. Blondy, “Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

d Alessandro, A.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d Alessandro, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[Crossref]

Dechelette, A.

Dhawan, A.

Diaz, L.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, A. J. Rua, and F. E. Fernandez, “Novel Pulsed-Laser-Deposition- VO2 Thin Films for Ultrafast Applications,” J. Electron. Mater. 34(5), 491–496 (2005).
[Crossref]

Drachev, V. P.

Drndic, M.

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Du, Y.

H. N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15(16), 6008–6015 (2013).
[Crossref] [PubMed]

Dussarrat, C.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Faist, J.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Fan, L.

Feldman, L. C.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[Crossref]

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced Phase Transition in VO2 Nanocrystals: Ultrafast Control of Surface-Plasmon Resonance,” Opt. Lett. 30(5), 558–560 (2005).
[Crossref] [PubMed]

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

Fernandez, F. E.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, A. J. Rua, and F. E. Fernandez, “Novel Pulsed-Laser-Deposition- VO2 Thin Films for Ultrafast Applications,” J. Electron. Mater. 34(5), 491–496 (2005).
[Crossref]

Fischbein, M. D.

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Fischer, B. M.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[Crossref]

Forget, P.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Fournier, T.

Fu, X.

H. Wang, X. Yi, S. Chen, and X. Fu, “Fabrication of vanadium oxide micro-optical switches,” Sens. Actuators A Phys. 122(1), 108–112 (2005).
[Crossref]

Fujimori, A.

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcıa-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. Lett. 66, 155412 (2002).

F. J. Garcıa-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rıos, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[Crossref]

García-Vidal, F. J.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

Gavagnin, M.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Georges, P.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Givernaud, J.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J. C. Orlianges, and P. Blondy, “Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Gosselin, S.

J. Sapriel, V. Y. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[Crossref]

Guo, Z.

S. Y. Chou, P. R. Krauss, W. Zhang, Z. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Haglund, R. F.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[Crossref]

M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced Phase Transition in VO2 Nanocrystals: Ultrafast Control of Surface-Plasmon Resonance,” Opt. Lett. 30(5), 558–560 (2005).
[Crossref] [PubMed]

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

Hall, K. L.

Haynes, C. L.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Haynes, T. E.

Heikkilä, M.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Helm, H.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[Crossref]

Hensler, D. H.

G. A. Rozgonyi and D. H. Hensler, “Structural and electrical properties of vanadium dioxide thin films,” J. Vac. Sci. Technol. 5(6), 194–199 (1968).
[Crossref]

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Im, H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Imada, M.

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Jackel, J. L.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d Alessandro, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kieffer, J. C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Kim, S.

Ko, C.

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utlilizing ultrafast metal insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008).
[Crossref]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, W. Zhang, Z. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Kuo, G. S.

X. Ma and G. S. Kuo, “Optical Switching Technology Comparison: Optical MEMS vs. other technologies,” Communications Magazine, IEEE. 41, S16–S23 (2003).

Leonard, D. N.

H. N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15(16), 6008–6015 (2013).
[Crossref] [PubMed]

Lépine, T.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Leroux, Ch.

Ch. Leroux, G. Nihoul, and G. V. Tendeloo, “From VO2(B) to VO2(R): theoretical structures of VO2 polymorphs and in situ electron microscopy,” Phys. Rev. B 57(9), 5111–5121 (1998).
[Crossref]

Leroy, J.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J. C. Orlianges, and P. Blondy, “Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Leskelä, M.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Leskova, T. A.

A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, “Resonant response of a bare metallic grating to s-polarized light,” Opt. Commun. 135, 352 (1997).
[Crossref]

Li, K. D.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d Alessandro, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[Crossref]

Lindquist, N. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Liu, H.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, A. J. Rua, and F. E. Fernandez, “Novel Pulsed-Laser-Deposition- VO2 Thin Films for Ultrafast Applications,” J. Electron. Mater. 34(5), 491–496 (2005).
[Crossref]

Longo, V.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Lopez, R.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[Crossref]

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

López, R.

Lopez-Rios, T.

López-Rios, T.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

Ma, X.

X. Ma and G. S. Kuo, “Optical Switching Technology Comparison: Optical MEMS vs. other technologies,” Communications Magazine, IEEE. 41, S16–S23 (2003).

Maradudin, A. A.

A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, “Resonant response of a bare metallic grating to s-polarized light,” Opt. Commun. 135, 352 (1997).
[Crossref]

A. Wirgin and A. A. Maradudin, “Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light p-polarized light,” Phys. Rev. B 31(8), R5573 (1985).
[Crossref]

Mardivirin, D.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J. C. Orlianges, and P. Blondy, “Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Martin-Moreno, L.

F. J. Garcıa-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. Lett. 66, 155412 (2002).

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Mendoza, D.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

Misra, V.

H. N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15(16), 6008–6015 (2013).
[Crossref] [PubMed]

Molchanov, V. Y.

J. Sapriel, V. Y. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[Crossref]

Narcowich, F. J.

S. R. Barone, M. A. Narcowich, and F. J. Narcowich, “Floquet theory and applications,” Phys. Rev. A 15(3), 1109–1125 (1977).
[Crossref]

Narcowich, M. A.

S. R. Barone, M. A. Narcowich, and F. J. Narcowich, “Floquet theory and applications,” Phys. Rev. A 15(3), 1109–1125 (1977).
[Crossref]

Nihoul, G.

Ch. Leroux, G. Nihoul, and G. V. Tendeloo, “From VO2(B) to VO2(R): theoretical structures of VO2 polymorphs and in situ electron microscopy,” Phys. Rev. B 57(9), 5111–5121 (1998).
[Crossref]

Niinistö, J.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Oh, S. H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Orlianges, J. C.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J. C. Orlianges, and P. Blondy, “Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Pallem, V. R.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Pannetier, B.

F. J. Garcıa-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rıos, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[Crossref]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

Patel, N. S.

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Pergament, A.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

Preist, T. W.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Puukilainen, E.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Qi, M.

Ráksi, F.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Ramanathan, S.

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utlilizing ultrafast metal insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008).
[Crossref]

Rauschenbach, K. A.

Rini, M.

Ritala, M.

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Rozgonyi, G. A.

G. A. Rozgonyi and D. H. Hensler, “Structural and electrical properties of vanadium dioxide thin films,” J. Vac. Sci. Technol. 5(6), 194–199 (1968).
[Crossref]

Rua, A. J.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, A. J. Rua, and F. E. Fernandez, “Novel Pulsed-Laser-Deposition- VO2 Thin Films for Ultrafast Applications,” J. Electron. Mater. 34(5), 491–496 (2005).
[Crossref]

Sambles, J. R.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Sanchez-Dehesa, J.

Sánchez-Dehesa, J.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

Santiago, V. R.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, A. J. Rua, and F. E. Fernandez, “Novel Pulsed-Laser-Deposition- VO2 Thin Films for Ultrafast Applications,” J. Electron. Mater. 34(5), 491–496 (2005).
[Crossref]

Sapriel, J.

J. Sapriel, V. Y. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[Crossref]

Schoenlein, R. W.

Shchegrov, A. V.

A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, “Resonant response of a bare metallic grating to s-polarized light,” Opt. Commun. 135, 352 (1997).
[Crossref]

Siders, C. W.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Smith, D. A.

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d Alessandro, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[Crossref]

Sobnack, M. B.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Squier, J. A.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Stefanovich, D.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Stefanovich, G.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Suh, J. Y.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[Crossref]

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

Tan, W. C.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Tendeloo, G. V.

Ch. Leroux, G. Nihoul, and G. V. Tendeloo, “From VO2(B) to VO2(R): theoretical structures of VO2 polymorphs and in situ electron microscopy,” Phys. Rev. B 57(9), 5111–5121 (1998).
[Crossref]

Thoman, A.

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[Crossref]

Tokura, Y.

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Tóth, C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Varghese, L. T.

Vasquez, O.

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, A. J. Rua, and F. E. Fernandez, “Novel Pulsed-Laser-Deposition- VO2 Thin Films for Ultrafast Applications,” J. Electron. Mater. 34(5), 491–496 (2005).
[Crossref]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Vo-Dinh, T.

Walser, R. M.

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

Wang, H.

H. Wang, X. Yi, S. Chen, and X. Fu, “Fabrication of vanadium oxide micro-optical switches,” Sens. Actuators A Phys. 122(1), 108–112 (2005).
[Crossref]

Wang, H. N.

H. N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15(16), 6008–6015 (2013).
[Crossref] [PubMed]

Wang, Q.

Wanstall, N. P.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Webb, K. J.

Wirgin, A.

A. Wirgin and A. A. Maradudin, “Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light p-polarized light,” Phys. Rev. B 31(8), R5573 (1985).
[Crossref]

Xuan, Y.

Yang, Z.

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utlilizing ultrafast metal insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

Yao, J.

Yi, X.

H. Wang, X. Yi, S. Chen, and X. Fu, “Fabrication of vanadium oxide micro-optical switches,” Sens. Actuators A Phys. 122(1), 108–112 (2005).
[Crossref]

Zhang, W.

S. Y. Chou, P. R. Krauss, W. Zhang, Z. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Zhuang, L.

S. Y. Chou, P. R. Krauss, W. Zhang, Z. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Annu. Rev. Mater. Res. (1)

Z. Yang, C. Ko, and S. Ramanathan, “Oxide electronics utlilizing ultrafast metal insulator transitions,” Annu. Rev. Mater. Res. 41(1), 337–367 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. F. Becker, A. B. Buckman, R. M. Walser, T. Lépine, P. Georges, and A. Brun, “Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2,” Appl. Phys. Lett. 65(12), 1507–1509 (1994).
[Crossref]

C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008).
[Crossref]

Communications Magazine, IEEE. (1)

X. Ma and G. S. Kuo, “Optical Switching Technology Comparison: Optical MEMS vs. other technologies,” Communications Magazine, IEEE. 41, S16–S23 (2003).

J. Appl. Phys. (1)

J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films,” J. Appl. Phys. 96(2), 1209–1213 (2004).
[Crossref]

J. Electron. Mater. (1)

H. Liu, O. Vasquez, V. R. Santiago, L. Diaz, A. J. Rua, and F. E. Fernandez, “Novel Pulsed-Laser-Deposition- VO2 Thin Films for Ultrafast Applications,” J. Electron. Mater. 34(5), 491–496 (2005).
[Crossref]

J. Lightwave Technol. (2)

D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d Alessandro, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996).
[Crossref]

F. J. Garcıa-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rıos, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999).
[Crossref]

J. Phys. Condens. Matter (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

J. Vac. Sci. Technol. (1)

G. A. Rozgonyi and D. H. Hensler, “Structural and electrical properties of vanadium dioxide thin films,” J. Vac. Sci. Technol. 5(6), 194–199 (1968).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Y. Chou, P. R. Krauss, W. Zhang, Z. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897–2904 (1997).
[Crossref]

Nano Lett. (2)

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, “Resonant response of a bare metallic grating to s-polarized light,” Opt. Commun. 135, 352 (1997).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

H. N. Wang, A. Dhawan, Y. Du, D. Batchelor, D. N. Leonard, V. Misra, and T. Vo-Dinh, “Molecular sentinel-on-chip for SERS-based biosensing,” Phys. Chem. Chem. Phys. 15(16), 6008–6015 (2013).
[Crossref] [PubMed]

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. A (1)

S. R. Barone, M. A. Narcowich, and F. J. Narcowich, “Floquet theory and applications,” Phys. Rev. A 15(3), 1109–1125 (1977).
[Crossref]

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

P. U. Jepsen, B. M. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, “Metal-Insulator Phase Transition in a VO2 Thin Film Observed with Terahertz Spectroscopy,” Phys. Rev. B 74(20), 205103 (2006).
[Crossref]

A. Wirgin and A. A. Maradudin, “Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light p-polarized light,” Phys. Rev. B 31(8), R5573 (1985).
[Crossref]

Ch. Leroux, G. Nihoul, and G. V. Tendeloo, “From VO2(B) to VO2(R): theoretical structures of VO2 polymorphs and in situ electron microscopy,” Phys. Rev. B 57(9), 5111–5121 (1998).
[Crossref]

Phys. Rev. Lett. (6)

F. J. Garcıa-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. Lett. 66, 155412 (2002).

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[Crossref]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998).
[Crossref]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, and J. R. Sambles, “Stationary Surface Plasmons on a Zero-Order Metal Grating,” Phys. Rev. Lett. 80(25), 5667–5670 (1998).
[Crossref]

Proc. SPIE (1)

J. Sapriel, V. Y. Molchanov, G. Aubin, and S. Gosselin, “Acousto-optic switch for telecommunication networks,” Proc. SPIE 5828, 68–75 (2005).
[Crossref]

Rev. Mod. Phys. (1)

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

RSC Adv. (1)

T. Blanquart, J. Niinistö, M. Gavagnin, V. Longo, M. Heikkilä, E. Puukilainen, V. R. Pallem, C. Dussarrat, M. Ritala, and M. Leskelä, “Atomic layer deposition and characterization of vanadium oxide thin films,” RSC Adv. 3(4), 1179–1185 (2013).
[Crossref]

Sci. Technol. Adv. Mater. (1)

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J. C. Orlianges, and P. Blondy, “Voltage-and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Science (1)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295(5553), 301–305 (2002).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

H. Wang, X. Yi, S. Chen, and X. Fu, “Fabrication of vanadium oxide micro-optical switches,” Sens. Actuators A Phys. 122(1), 108–112 (2005).
[Crossref]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Verlag, 1988).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd ed. (Artech House, Boston, MA, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 (a) Schematic for the waveguide-mode gold nano-grating coated with a thin layer of VO2. VO2 changes phase from its monoclinic semiconductor form to a tetragonal metallic form when heated to ~68 °C, when IR radiation is applied, or under the effect of voltage and (b) Reflectance versus wavelength curve for VO2 (S), i.e. RS (λ), and VO2 (M), i.e. RM (λ) generated using RCWA simulations. The VO2 coated narrow groove nano-grating can work as an optical switch in the visible, near-IR and IR range. (c) Schematic for the VO2 coated narrow groove nano-grating showing the grating width (w1), the groove width (w2), the groove height (h), and the thickness (t) of the VO2 layer.
Fig. 2
Fig. 2 RCWA simulations showing reflectance versus wavelength (λ) curves for (a) Bulk VO2, (b) Thin film of VO2 over gold, and (c) Gold narrow groove nano-gratings covered with a thin film of VO2. The parameters such as the height of the grating above the substrate surface (h), the grating width (w1), the narrow groove width (w2), and the thickness of VO2 (t) film were varied in the simulations.
Fig. 3
Fig. 3 Effect of height, h, of the VO2-coated narrow groove plasmonic nano-gratings on the differential reflectance map as a function of wavelength and groove width for (a) h = 50 nm, (c) h = 150 nm, and (e) h = 250 nm. These maps show several bands corresponding to different DR modes that are coupled into the nano-gratings. Effect of height on the differential reflectance versus wavelength curves for (b) h = 50 nm, (d) h = 150 nm, and (f) h = 250 nm. In all the cases above, t = 2 nm, w2 = 2 nm, and w1 = 50 nm were taken.
Fig. 4
Fig. 4 Electric field intensity enhancement (|E|2/|E0|)2) versus wavelength — calculated using finite difference time domain (FDTD) simulations for normally incident radiation — inside a VO2-coated gold narrow groove nano-grating for the semiconductor state of the VO2 thin film (i.e. VO2(S)). The insets show the E-field spatial profiles inside the grooves (i.e. between the adjacent VO2 walls of the VO2-coated gold nano-gratings) at a resonant wavelength of 1106 nm and an off-resonant wavelength of 950 nm, as shown by arrows. In the FDTD simulations, the groove height was taken to be 150 nm. The groove width, w2, was taken as 2 nm, while the thickness of the VO2 layer was taken to be 2 nm. The grating width, w1, for the above simulations was taken to be 50 nm.
Fig. 5
Fig. 5 Maps showing differential reflectance plotted as a function of wavelength and the nano-grating groove width, w2. The matrix of the differential reflectance maps is shown for different values of VO2 layer thickness, t, and the grating width, w1, at a constant nano-grating height, h = 50 nm.
Fig. 6
Fig. 6 Maps showing differential reflectance plotted as a function of wavelength and the groove width, w2. The matrix of the differential reflectance maps is shown for different values of VO2 layer thickness, t, and grating width, w1, at a constant nano-grating height, h = 150 nm.
Fig. 7
Fig. 7 Graphs showing (a) Reflectance versus wavelength curves for VO2 (S) coated nano-grating, (b) Reflectance versus wavelength curves for VO2 (M) coated nano-grating, and (c) Differential reflectance versus wavelength curves for VO2 coated nano-grating. (d) Differential reflectance versus wavelength showing the effect of normalized ‘w2’, i.e., ‘w2/P’ where the period of the nano-grating, P = w2 + w1 + 2*t on the maxima of the differential reflectance. For all the above cases, t = 2 nm, h = 50 nm, and w1 = 50 nm were taken.
Fig. 8
Fig. 8 Differential reflectance maps as a function of wavelength and groove width, w2, of the VO2-coated narrow groove plasmonic nano-gratings for (a) w2 = 4 nm, and (c) w2 = 6 nm. These maps show the effect of groove width on the maxima in the differential reflectance (labeled as DRPeak Modes) and the minima in the differential reflectance (labeled as DRDip Modes). Differential reflectance versus wavelength curves for (b) w2 = 4 nm, and (d) w2 = 6 nm showing the DRPeak Modes and the DRDip Modes. In all the cases above, h = 250 nm, t = 2 nm, and w1 = 50 nm were taken.
Fig. 9
Fig. 9 Effect of varying w2 on: (a) Peak resonance wavelength for DRPeak mode 2, (b) Peak differential reflectance for DRPeak mode 2, (c) Peak resonance wavelength for DRPeak mode 1, and (d) Peak differential reflectance for DRPeak mode 1. For all the above cases, w1 = 50 nm, h = 50 nm, and t = 2 nm were taken.
Fig. 10
Fig. 10 Graphs showing the effect of thickness, t, of the VO2 layer on the (a) Reflectance versus wavelength curves for VO2 (S) coated nano-grating, and (b) Reflectance versus wavelength curves for VO2 (M) coated nano-grating, and (c) Differential reflectance versus wavelength curves showing the effect of thickness on the tunability of the peak differential reflectance wavelengths. For all the above cases, h = 50 nm, w2 = 2 nm, and w1 = 50 nm were taken.
Fig. 11
Fig. 11 Differential reflectance versus wavelength curves showing the effect of thickness, t, of the VO2 layer on the tunability of the peak differential reflectance wavelengths for different groove widths: (a) w2 = 6 nm (b) w2 = 10 nm (c) w2 = 15 nm. For all the above cases, h = 50 nm, and w1 = 50 nm were taken.
Fig. 12
Fig. 12 Effect of thickness, t, of the VO2 layer on the (a) Peak resonance wavelength for DRPeak mode 2 (b) Peak differential reflectance for DRPeak mode 2 (c) Peak resonance wavelength for DRPeak mode 1 (d) Peak differential reflectance for DRPeak mode 1. For all the above cases, h = 50 nm, w1 = 50 nm and w2 = 2 nm were taken.
Fig. 13
Fig. 13 Effect of the grating width, w1, on the (a) Reflectance versus wavelength curve for VO2 (S) coated nano-grating (b) Reflectance versus wavelength curve for VO2 (M) coated nano-grating and (c) Differential reflectance versus wavelength curve. In all the above cases, w2 = 2 nm, h = 50 nm and t = 2 nm were taken.
Fig. 14
Fig. 14 Effect of the grating width, w1, on the (a) Peak resonance wavelength or DRPeak mode 2 (b) Peak differential reflectance for DRPeak mode 2 (c) Peak resonance wavelength for DRPeak mode 1 (d) Peak differential reflectance for DRPeak mode 1. For all the above cases, w2 = 2 nm, h = 50 nm and t = 2 nm were taken.
Fig. 15
Fig. 15 Effect of the angle of incident radiation on (a) the reflectance spectra of VO2(S)-coated narrow groove plasmonic nano-gratings (b) the reflectance spectra of VO2(M)-coated narrow groove plasmonic nano-gratings and (c) the differential reflectance spectra of the VO2-coated narrow groove plasmonic nano-gratings. Inset shows the reflectance for VO2(S) in blue color, reflectance for VO2(M) in red color, and the differential reflectance in green color as a function of incident angle. In all the cases above, t = 2 nm, w2 = 2 nm, w1 = 50 nm and h = 150 nm were taken.
Fig. 16
Fig. 16 (a) Schematic showing slanted gold (Au) nano-gratings with flat top, (b) Schematic showing slanted silver (Ag) nano-gratings with flat top. RCWA simulations showing the variation in the differential reflectance with wavelength as the thickness of the VO2 layer is varied from 2 nm to 9 nm in the (c) Slanted gold nano-gratings with flat top and in the (d) Slanted silver nano-gratings with flat top. Height of the grating, h is 200 nm, period of the grating is 120 nm and the thickness of the VO2 thin film is varied between 2 nm and 9 nm. (e) Schematic showing slanted gold (Au) nano-gratings with round-top and (f) Schematic showing slanted silver (Ag) nano-gratings with round-top. RCWA simulations showing the variation in the differential reflectance with wavelength as the thickness of the VO2 layer is varied from 2 nm to 9 nm in the (g) Slanted gold nano-gratings with round top and in the (h) Slanted silver nano-gratings with round top. (i) SEM cross-section of the silicon mold used to prepare the flat-top silver nano-gratings. (j) SEM cross-section of the silver nano-gratings prepared by employing resistless nano-imprinting in metal (RNIM) [41]. (k) TEM cross-sections of the slanted gold nano-gratings with round-top [42]. The scale bar is 100 nm. These nano-gratings can be uniformly coated with a 2 nm-9 nm conformal layer of VO2 by employing atomic layer deposition (ALD).
Fig. 17
Fig. 17 (a) Schematic showing the angle of incidence (φ) and the in-plane angle (θ) for plasmonic nano-gratings. Graphs showing the reflectance spectra for VO2(S) and VO2(M) along with the differential reflectance spectra for the 1-D VO2-coated nano-grating for TE-polarized light when light is incident normally on the nano-grating in the plane of incidence (φ = 0°) but the in-plane angle (θ) is varied as (a) 0° (b) 30° (c) 45° and (d) 90°. The magnitude of differential reflectance is low for lesser in-plane angles and increases as θ increases.
Fig. 18
Fig. 18 Schematic showing a section of the 2-D 'VO2 based plasmonic nano-gratings' with the groove widths w2x and w2y in the X and Y directions respectively. RCWA simulations, for normal incidence, showing the reflectance spectra and the differential reflectance versus wavelength for w2x:w2y = 1:1 when the polarization angle is (a) 0° (p-polarized light) (b) 45° (c) 90° (s-polarized light), w2x:w2y = 2:1 when the polarization angle is (d) 0° (p-polarized light) (e) 45° (f) 90° (s-polarized light) and w2x:w2y = 3:1 (g) 0° (p-polarized light) (h) 45° (i) 90° (s-polarized light). For all the above cases, w1 = 50 nm, h = 150 nm and t = 2 nm were used. The in-plane angle, θ, is zero throughout these simulations.

Metrics