Abstract

We describe a three-dimensional microscopy technique based on spectral and frequency encoding. The method employs a wavelength-swept laser to illuminate a specimen with a spectrally-dispersed line focus that sweeps over the specimen in time. The spatial information along each spectral line is further mapped into different modulation frequencies. Spectrally-resolved detection and subsequent Fourier analysis of the back-scattered light from the specimen therefore enable high-speed, scanner-free imaging of the specimen with a single-element photodetector. High-contrast, three-dimensional imaging capability of this method is demonstrated by presenting images of various materials and biological specimens.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatially-chirped modulation imaging of absorbtion and fluorescent objects on single-element optical detector

Greg Futia, Philip Schlup, David G. Winters, and Randy A. Bartels
Opt. Express 19(2) 1626-1640 (2011)

Rapid super-resolution line-scanning microscopy through virtually structured detection

Yanan Zhi, Rongwen Lu, Benquan Wang, Qiuxiang Zhang, and Xincheng Yao
Opt. Lett. 40(8) 1683-1686 (2015)

Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish

Zhe Yang, Li Mei, Fei Xia, Qingming Luo, Ling Fu, and Hui Gong
Biomed. Opt. Express 6(5) 1797-1811 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Shotton and N. White, “Confocal scanning microscopy: three-dimensional biological imaging,” Trends Biochem. Sci. 14(11), 435–439 (1989).
    [Crossref] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  3. T. Wilson, Confocal Microscopy (Academic, 1990).
  4. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
    [Crossref] [PubMed]
  5. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23(9), 655–657 (1998).
    [Crossref] [PubMed]
  6. T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
    [Crossref] [PubMed]
  7. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
    [Crossref] [PubMed]
  8. C. Boudoux, S. Yun, W. Oh, W. White, N. Iftimia, M. Shishkov, B. Bouma, and G. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
    [Crossref] [PubMed]
  9. R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  10. M. Liang, R. L. Stehr, and A. W. Krause, “Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination,” Opt. Lett. 22(11), 751–753 (1997).
    [Crossref] [PubMed]
  11. R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–120 (2007).
    [Crossref]
  12. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
    [Crossref]
  13. G. Futia, P. Schlup, D. G. Winters, and R. A. Bartels, “Spatially-chirped modulation imaging of absorbtion and fluorescent objects on single-element optical detector,” Opt. Express 19(2), 1626–1640 (2011).
    [Crossref] [PubMed]
  14. J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30(11), 1720–1724 (1991).
    [Crossref]
  15. C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
    [Crossref]
  16. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987).
    [Crossref] [PubMed]
  17. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2010).
  18. G. S. Kino and T. R. Corle, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).
  19. T. R. Corle, C.-H. Chou, and G. S. Kino, “Depth response of confocal optical microscopes,” Opt. Lett. 11(12), 770–772 (1986).
    [Crossref] [PubMed]
  20. Y. Bar-Ilan and D. Yelin, “Spectral imaging using single-axis spectrally dispersed illumination,” Opt. Lett. 39(17), 5177–5179 (2014).
    [Crossref] [PubMed]
  21. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
    [Crossref] [PubMed]
  22. H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
    [Crossref] [PubMed]
  23. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
    [Crossref] [PubMed]
  24. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  25. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [PubMed]

2014 (1)

2012 (1)

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2009 (1)

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

2008 (2)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

2007 (1)

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–120 (2007).
[Crossref]

2006 (1)

2005 (1)

2002 (1)

1998 (2)

1997 (1)

1996 (1)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

1991 (1)

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30(11), 1720–1724 (1991).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1989 (1)

D. Shotton and N. White, “Confocal scanning microscopy: three-dimensional biological imaging,” Trends Biochem. Sci. 14(11), 435–439 (1989).
[Crossref] [PubMed]

1988 (1)

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

1987 (1)

1986 (1)

Akbari, H.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Baraniuk, R. G.

R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–120 (2007).
[Crossref]

Bar-Ilan, Y.

Bartels, R. A.

Bewersdorf, J.

Biedermann, B. R.

Boudoux, C.

Bouma, B.

Bouma, B. E.

Brown, J. Q.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Carlini, A. R.

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Chen, G. Z.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Chou, C.-H.

Corle, T. R.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Driggers, R. G.

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30(11), 1720–1724 (1991).
[Crossref]

Eigenwillig, C. M.

Fei, B.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Fujimoto, J. G.

Futia, G.

Griffin, S. T.

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30(11), 1720–1724 (1991).
[Crossref]

Halford, C. E.

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30(11), 1720–1724 (1991).
[Crossref]

Halig, L. V.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Hell, S. W.

Huber, R.

Iftimia, N.

Ishida, H.

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Kino, G. S.

Klein, T.

Kosugi, Y.

Krause, A. W.

Liang, M.

Mao, X.

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

Master, V.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Nieh, P. T.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Oh, W.

Oh, W.-Y.

Osunkoya, A.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Otsuki, S.

Palmer, G. M.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Pick, R.

Ramanujam, N.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Sanders, J. S.

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30(11), 1720–1724 (1991).
[Crossref]

Schlup, P.

Schuster, D. M.

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

Shear, J. B.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Sheppard, C.

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

Shimizu, M.

Shishkov, M.

Shotton, D.

D. Shotton and N. White, “Confocal scanning microscopy: three-dimensional biological imaging,” Trends Biochem. Sci. 14(11), 435–439 (1989).
[Crossref] [PubMed]

Stehr, R. L.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Tanaami, T.

Tearney, G.

Tearney, G. J.

Tomosada, N.

Vakoc, B. J.

Vishwanath, K.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

Webb, R. H.

Webb, W. W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

White, N.

D. Shotton and N. White, “Confocal scanning microscopy: three-dimensional biological imaging,” Trends Biochem. Sci. 14(11), 435–439 (1989).
[Crossref] [PubMed]

White, W.

Wieser, W.

Williams, R. M.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Wilson, T.

Winters, D. G.

Wojtkowski, M.

Xu, C.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Yelin, D.

Yun, S.

Zipfel, W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Curr. Opin. Biotechnol. (1)

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol. 20(1), 119–131 (2009).
[Crossref] [PubMed]

IEEE Signal Process. Mag. (2)

R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–120 (2007).
[Crossref]

R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

J. Biomed. Opt. (1)

H. Akbari, L. V. Halig, D. M. Schuster, A. Osunkoya, V. Master, P. T. Nieh, G. Z. Chen, and B. Fei, “Hyperspectral imaging and quantitative analysis for prostate cancer detection,” J. Biomed. Opt. 17(7), 076005 (2012).
[Crossref] [PubMed]

J. Mod. Opt. (1)

C. Sheppard and X. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

Opt. Eng. (1)

J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30(11), 1720–1724 (1991).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Trends Biochem. Sci. (1)

D. Shotton and N. White, “Confocal scanning microscopy: three-dimensional biological imaging,” Trends Biochem. Sci. 14(11), 435–439 (1989).
[Crossref] [PubMed]

Other (3)

T. Wilson, Confocal Microscopy (Academic, 1990).

J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2010).

G. S. Kino and T. R. Corle, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).

Supplementary Material (1)

» Media 1: MP4 (9204 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic of F-SECM. Two-dimensional spatial information of a specimen is encoded by modulation frequencies and wavelengths of probe light. The back-scattered light from the specimen is measured by a single-element detector, and its spectrally-resolved detection and subsequent Fourier analysis enables two-dimensional image re-construction. The slit (S) in the detection path also allows depth-resolved imaging. SS: swept source, SS-OUTPUT: swept source output, FBG: fiber Bragg grating, SMF: single-mode fiber, C: collimator, L1-L5: achromatic spherical lenses, CL: cylindrical lens, FM: frequency modulator, BS: beam splitter, DG: diffraction grating, OBJ: objective lens, S: slit, PD: photodetector, DAQ: data acquisition system, TRIG: DAQ triggering signal, SIG: measurement signal
Fig. 2
Fig. 2 F-SECM frequency modulator. Light from the light source is focused into a line along the radius of the modulator. Rotation of the disc produced the light modulated with different temporal frequencies along the radius.
Fig. 3
Fig. 3 Timing diagram for F-SECM signal acquisition. TFM: FM rotational period, TRIG: 50-kHz data acquisition (DAQ) trigger signal, SS-OUTPUT: swept source output, DAQ-CLK: 100-MHz DAQ sampling clock, SIG: measured signal at a photodetector. Upon receiving the TRIG pulse for each wavelength sweep, the DAQ system acquired Nx = 1536 samples with the 100-MHz DAQ sampling clock (DAQ-CLK).
Fig. 4
Fig. 4 F-SECM image reconstruction procedure. (a) The F-SECM temporal signal acquired during a single revolution of the disc was sampled at each wavelength, so that it can be arranged into two-dimensional matrix in the (λ, t) and (x, u) domains. Here, u denotes the spatial frequency in the y axis. (b, c) The spatial information in the y axis or as a function of modulation frequency can then be obtained by taking the inverse Fourier transform of the signal at a particular wavelength. Presented in (d) is an example of the reconstructed F-SECM image.
Fig. 5
Fig. 5 (a) F-SECM image of a 1951 USAF resolution target and (b) a magnified view of the region indicated in (a). (c, d) show the intensity profiles along the solid red lines in (b). The spatial frequency of the elements 1 in group 7 is 128 lps/mm, which corresponds to 3.9 μm per line. The spectral line focus scanned the target from left to right directions, meaning that the left side of the image corresponds to the shorter wavelength.
Fig. 6
Fig. 6 Measured F-SECM axial response
Fig. 7
Fig. 7 Representative F-SECM images of (a) a mouse ear (b), pine cone axis (c), onion cells and (d, e) interior and exterior structures of an eggshell, respectively. The spectral line focus scanned the specimens from left to right directions. The left side of the images corresponds to short wavelength. The scale bar represents 50 μm.
Fig. 8
Fig. 8 (a)-(c) F-SECM images of a dragonfly eye acquired at its surface, and 10 and 20 μm below the surface, respectively. The spectral line focus scanned the specimens from left to right directions. The left side of the images corresponds to short wavelength. (d) shows a three–dimensional representation of the dragon fly eye reconstructed from 80 images acquired with a step size of 2 μm in depth (see Media 1). The scale bar denotes 50 μm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

m( r m , θ m )= 1 2 + 1 2 sign( cos( k 0 Δk 2 + Δk N m round[ N m r m R ] θ m ) )
Fo V x =2 f OBJ tan( Δ θ x 2 )
Δ θ x ~ Δλ Λ ,
δ λ G = λ 0 Λ D
v= 2π λ nsin α r
u= 8π λ n sin 2 ( α 2 )z
v= 2π λ N A r
u= 4π λ ( n n 2 N A 2 )z.
δz=1.001 λ n n 2 N A 2 .

Metrics