Abstract

Minimizing phase fluctuation along passive analog fiber link is proposed and experimentally demonstrated. By utilizing three different optical wavelengths, we could significantly reduce the effect of coherent Rayleigh noise (CRN). In addition, a phase-locked loop is employed for dynamic phase fluctuation compensation. The RMS phase jitter within two-hour period is reduced to ~1.7131 ps over 40-km fiber link.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase fluctuation cancellation of anonymous microwave signal transmission in passive systems

Zonglei Li, Lianshan Yan, Yulan Peng, Wei Pan, Bin Luo, and Liyang Shao
Opt. Express 22(16) 19686-19691 (2014)

Multi-access fiber-optic radio frequency transfer with passive phase noise compensation

Hongwei Li, Guiling Wu, Jiapeng Zhang, Jianguo Shen, and Jianping Chen
Opt. Lett. 41(24) 5672-5675 (2016)

Fiber-optic radio frequency transfer based on passive phase noise compensation with frequency dividing and filtering

Rui Huang, Guiling Wu, Hongwei Li, and Jianping Chen
Opt. Lett. 41(3) 626-629 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
    [Crossref]
  3. D. Hou, P. Li, C. Liu, J. Zhao, and Z. Zhang, “Long-term stable frequency transfer over an urban fiber link using microwave phase stabilization,” Opt. Express 19(2), 506–511 (2011).
    [Crossref] [PubMed]
  4. K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
    [Crossref]
  5. M. Tarenghi, “The Atacama large millimeer/submillimeter array: overview&status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
    [Crossref]
  6. J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
    [Crossref]
  7. L. Zhang, L. Chang, Y. Dong, W. Xie, H. He, and W. Hu, “Phase drift cancellation of remote radio frequency transfer using an optoelectronic delay-locked loop,” Opt. Lett. 36(6), 873–875 (2011).
    [Crossref] [PubMed]
  8. J. Kim, J. A. Cox, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
    [Crossref]
  9. J. F. Cliche and B. Shillue, “Precision timing control for radio-astronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Control Syst. 26(1), 19–26 (2006).
    [Crossref]
  10. G. Marra, H. S. Margolis, S. N. Lea, and P. Gill, “High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber,” Opt. Lett. 35(7), 1025–1027 (2010).
    [Crossref] [PubMed]
  11. M. T. L. Hsu, Y. He, D. A. Shaddock, R. B. Warrington, and M. B. Gray, “All-digital radio-frequency signal distribution via optical fibers,” IEEE Photon. Technol. Lett. 24(12), 1015–1017 (2012).
    [Crossref]
  12. C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
    [Crossref] [PubMed]
  13. G. Marra, H. S. Margolis, and D. J. Richardson, “Dissemination of an optical frequency comb over fiber with 3 × 10(-18) fractional accuracy,” Opt. Express 20(2), 1775–1782 (2012).
    [Crossref] [PubMed]
  14. W. Li, W. T. Wang, W. H. Sun, W. Y. Wang, and N. H. Zhu, “Stable radio-frequency phase distribution over optical fiber by phase-drift auto-cancellation,” Opt. Lett. 39(15), 4294–4296 (2014).
    [Crossref] [PubMed]
  15. Z. Li, L. Yan, Y. Peng, W. Pan, B. Luo, and L. Shao, “Phase fluctuation cancellation of anonymous microwave signal transmission in passive systems,” Opt. Express 22(16), 19686–19691 (2014).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

2012 (2)

M. T. L. Hsu, Y. He, D. A. Shaddock, R. B. Warrington, and M. B. Gray, “All-digital radio-frequency signal distribution via optical fibers,” IEEE Photon. Technol. Lett. 24(12), 1015–1017 (2012).
[Crossref]

G. Marra, H. S. Margolis, and D. J. Richardson, “Dissemination of an optical frequency comb over fiber with 3 × 10(-18) fractional accuracy,” Opt. Express 20(2), 1775–1782 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2008 (3)

J. Kim, J. A. Cox, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

M. Tarenghi, “The Atacama large millimeer/submillimeter array: overview&status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
[Crossref]

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

J. F. Cliche and B. Shillue, “Precision timing control for radio-astronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Control Syst. 26(1), 19–26 (2006).
[Crossref]

2005 (1)

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

2000 (1)

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Amy-Klein, A.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Asari, K.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Bize, S.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chambon, D.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Chang, L.

Chardonnet, C.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Clairon, A.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Cliche, J. F.

J. F. Cliche and B. Shillue, “Precision timing control for radio-astronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Control Syst. 26(1), 19–26 (2006).
[Crossref]

Cox, J. A.

J. Kim, J. A. Cox, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Daussy, C.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Dong, Y.

Gill, P.

Goncharov, A.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Gray, M. B.

M. T. L. Hsu, Y. He, D. A. Shaddock, R. B. Warrington, and M. B. Gray, “All-digital radio-frequency signal distribution via optical fibers,” IEEE Photon. Technol. Lett. 24(12), 1015–1017 (2012).
[Crossref]

Guinet, M.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Hara, T.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

He, H.

He, Y.

M. T. L. Hsu, Y. He, D. A. Shaddock, R. B. Warrington, and M. B. Gray, “All-digital radio-frequency signal distribution via optical fibers,” IEEE Photon. Technol. Lett. 24(12), 1015–1017 (2012).
[Crossref]

Hou, D.

Hsu, M. T. L.

M. T. L. Hsu, Y. He, D. A. Shaddock, R. B. Warrington, and M. B. Gray, “All-digital radio-frequency signal distribution via optical fibers,” IEEE Photon. Technol. Lett. 24(12), 1015–1017 (2012).
[Crossref]

Hu, W.

Kartner, F. X.

J. Kim, J. A. Cox, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Kawano, N.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Kim, J.

J. Kim, J. A. Cox, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Kuji, S.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Lea, S. N.

Levine, J.

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
[Crossref]

Li, P.

Li, W.

W. Li, W. T. Wang, W. H. Sun, W. Y. Wang, and N. H. Zhu, “Stable radio-frequency phase distribution over optical fiber by phase-drift auto-cancellation,” Opt. Lett. 39(15), 4294–4296 (2014).
[Crossref] [PubMed]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

Li, Z.

Liu, C.

Lopez, O.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Lours, M.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Luiten, A. N.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Luo, B.

Margolis, H. S.

Marra, G.

Narbonneau, F.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Nishio, M.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Pan, W.

Z. Li, L. Yan, Y. Peng, W. Pan, B. Luo, and L. Shao, “Phase fluctuation cancellation of anonymous microwave signal transmission in passive systems,” Opt. Express 22(16), 19686–19691 (2014).
[Crossref] [PubMed]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

Peng, Y.

Richardson, D. J.

Santarelli, G.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Sato, K.

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

Shaddock, D. A.

M. T. L. Hsu, Y. He, D. A. Shaddock, R. B. Warrington, and M. B. Gray, “All-digital radio-frequency signal distribution via optical fibers,” IEEE Photon. Technol. Lett. 24(12), 1015–1017 (2012).
[Crossref]

Shao, L.

Shillue, B.

J. F. Cliche and B. Shillue, “Precision timing control for radio-astronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Control Syst. 26(1), 19–26 (2006).
[Crossref]

Sun, W. H.

Tarenghi, M.

M. Tarenghi, “The Atacama large millimeer/submillimeter array: overview&status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
[Crossref]

Tobar, M. E.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Wang, W. T.

Wang, W. Y.

Warrington, R. B.

M. T. L. Hsu, Y. He, D. A. Shaddock, R. B. Warrington, and M. B. Gray, “All-digital radio-frequency signal distribution via optical fibers,” IEEE Photon. Technol. Lett. 24(12), 1015–1017 (2012).
[Crossref]

Xie, W.

Yan, L.

Z. Li, L. Yan, Y. Peng, W. Pan, B. Luo, and L. Shao, “Phase fluctuation cancellation of anonymous microwave signal transmission in passive systems,” Opt. Express 22(16), 19686–19691 (2014).
[Crossref] [PubMed]

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

Yao, J.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

Zhang, L.

Zhang, Z.

Zhao, J.

Zhu, N. H.

Zou, X.

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

Astrophys. Space Sci. (1)

M. Tarenghi, “The Atacama large millimeer/submillimeter array: overview&status,” Astrophys. Space Sci. 313(1-3), 1–7 (2008).
[Crossref]

IEEE Control Syst. (1)

J. F. Cliche and B. Shillue, “Precision timing control for radio-astronomy: maintaining femtosecond synchronization in the Atacama Large Millimeter Array,” IEEE Control Syst. 26(1), 19–26 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. T. L. Hsu, Y. He, D. A. Shaddock, R. B. Warrington, and M. B. Gray, “All-digital radio-frequency signal distribution via optical fibers,” IEEE Photon. Technol. Lett. 24(12), 1015–1017 (2012).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

K. Sato, T. Hara, S. Kuji, K. Asari, M. Nishio, and N. Kawano, “Development of an ultrastable fiber optic frequency distribution system using an optical delay control module [for frequency standard and VLBI],” IEEE Trans. Instrum. Meas. 49(1), 19–24 (2000).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Tech. 61(9), 3470–3478 (2013).
[Crossref]

Metrologia (1)

J. Levine, “A review of time and frequency transfer methods,” Metrologia 45(6), 162–174 (2008).
[Crossref]

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

J. Kim, J. A. Cox, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17),” Phys. Rev. Lett. 94(20), 203904 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the phase fluctuation compensation system. EPS: electronic phase shifter; PLL: phase-locked loop; E/O: electronic/optical conversion; O/E: optical/electronic conversion; PI: proportion-integration.
Fig. 2
Fig. 2 Experimental setup of the proposed phase fluctuation compensation system. TLS: tunable laser source; MZM: Mach-Zehnder modulator; EDFA: Erbium-doped fiber amplifier; PC: polarization controller; OC: optical circulator; WDM: wavelength division multiplexer; PD: photo-detector; BPF: band pass filter; LNA: low noise amplifier; OSC: oscilloscope.
Fig. 3
Fig. 3 Measured phase difference between the original signal and the final output signal over (a) 25-km and (b) 40-km fiber link (blue: uncompensated; red: compensated).
Fig. 4
Fig. 4 Phase noise of the original signal and measured final output signal through (a) 25-km and (b) 40-km fiber link with/without compensation (black: original; blue: uncompensated; red: compensated).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ θ onepath (t)= ω RF t+ θ ref θ 0 + θ c (t) θ f (t) θ triplepath (t)= ω RF t+ θ ref θ 0 θ c (t)3 θ f (t) θ output (t)= ω RF t+ θ ref θ 0 θ c (t) θ f (t)

Metrics