Abstract

Laser-induced periodic surface structure (LIPSS) is one of the most remarkable nanostructures formed only by a simple procedure of laser irradiation that enables to control cell behaviors. To the best of our knowledge, however, LIPSS formation on a scaffold-usable biodegradable polymer had not been succeede d probably due to relatively-low glass transition temperature and melting temperature of such polymers. In this study, we demonstrate LIPSS formation on a poly-L-lactic acid (PLLA), a versatile biodegradable polymer which has been widely used in clinical practice. Experimental results revealed that the repetition rate of femtosecond laser is one of the key parameters for LIPSS formation on PLLA, suggesting that thermal properties and photochemical reactions should be considered. The present study expands the potential of femtosecond laser processing for fabrication of highly-biocompatible scaffold in tissue engineering.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photophysical mechanisms of collagen modification by 80 MHz femtosecond laser

Vladimir Hovhannisyan, Ara Ghazaryan, Yung-Fang Chen, Shean-Jen Chen, and Chen-Yuan Dong
Opt. Express 18(23) 24037-24047 (2010)

3D scaffold fabrication by mask projection excimer laser stereolithography

Szabolcs Beke, Balázs Farkas, Ilaria Romano, and Fernando Brandi
Opt. Mater. Express 4(10) 2032-2041 (2014)

Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses

Chih Wang, Hsuan-I Wang, Wei-Tsung Tang, Chih-Wei Luo, Takayoshi Kobayashi, and Jihperng Leu
Opt. Express 19(24) 24286-24297 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Bettinger and Z. Bao, “Organic thin-film transistors fabricated on resorbable biomaterial substrates,” Adv. Mater. 22(5), 651–655 (2010).
    [Crossref] [PubMed]
  2. B. L. Seal, T. C. Otero, and A. Panitch, “Polymeric biomaterials for tissue and organ regeneration,” Mater. Sci. Eng. 34(4-5), 147–230 (2001).
    [Crossref]
  3. G. Vozzi, C. Flaim, A. Ahluwalia, and S. Bhatia, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials 24(14), 2533–2540 (2003).
    [Crossref] [PubMed]
  4. L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Farè, “Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development,” Acta Biomater. 6(6), 1948–1957 (2010).
    [Crossref] [PubMed]
  5. Y. Lu and S. C. Chen, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Adv. Drug Deliv. Rev. 56(11), 1621–1633 (2004).
    [Crossref] [PubMed]
  6. C. A. Aguilar, Y. Lu, S. Mao, and S. Chen, “Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers,” Biomaterials 26(36), 7642–7649 (2005).
    [Crossref] [PubMed]
  7. H. W. Wang, C. W. Cheng, C. W. Li, H. W. Chang, P. H. Wu, and G. J. Wang, “Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation,” Int. J. Nanomedicine 7, 1865–1873 (2012).
    [Crossref] [PubMed]
  8. R. Ortiz, S. Moreno-Flores, I. Quintana, M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater Sci Eng C Mater Biol Appl 37, 241–250 (2014).
    [Crossref] [PubMed]
  9. W. Y. Yeong, H. Yu, K. P. Lim, K. L. G. Ng, Y. C. F. Boey, V. S. Subbu, and L. P. Tan, “Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer,” Tissue Eng. Part C Methods 16(5), 1011–1021 (2010).
    [Crossref] [PubMed]
  10. V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
    [Crossref] [PubMed]
  11. H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
    [Crossref] [PubMed]
  12. K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26(7), 763–769 (2005).
    [Crossref] [PubMed]
  13. B. L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li, “Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds,” Acta Biomater. 8(7), 2648–2658 (2012).
    [Crossref] [PubMed]
  14. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688 (1965).
    [Crossref]
  15. M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro Nanoengineering. 7(2), 194–197 (2012).
    [Crossref]
  16. M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng. 51(12), 121815 (2012).
    [Crossref]
  17. G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
    [Crossref] [PubMed]
  18. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  19. B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
    [Crossref]
  20. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
    [Crossref]
  21. H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
    [Crossref]
  22. K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
    [Crossref]
  23. T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
    [Crossref]
  24. S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), 395–398 (1999).
    [Crossref]
  25. M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, “Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses,” Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011).
    [Crossref] [PubMed]
  26. E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
    [Crossref] [PubMed]
  27. S. Pérez, E. Rebollar, M. Oujja, M. Martín, and M. Castillejo, “Laser-induced periodic surface structuring of biopolymers,” Appl. Phys., A Mater. Sci. Process. 110(3), 683–690 (2013).
    [Crossref]
  28. S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
    [Crossref] [PubMed]
  29. É. Kiss, I. Bertóti, and E. I. Vargha-Butler, “XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films,” J. Colloid Interface Sci. 245(1), 91–98 (2002).
    [Crossref] [PubMed]
  30. S.-T. Hsu, H. Tan, and Y. L. Yao, “Effect of excimer laser irradiation on crystallinity and chemical bonding of biodegradable polymer,” Polym. Degrad. Stabil. 97(1), 88–97 (2012).
    [Crossref]
  31. R. Auras, L. Lim, S. Selke, and H. Tsuji, Poly(Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications (John Wiley & Sons, 2010).
  32. M. Bolle and S. Lazare, “Large scale excimer laser production on polymer surfaces of submicron periodic structures,” Appl. Surf. Sci. 69, 31–37 (1993).
    [Crossref]
  33. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  34. E. Lizundia, A. Oleaga, A. Salazar, and J. R. Sarasua, “Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites,” Polymer (Guildf.) 53(12), 2412–2421 (2012).
    [Crossref]
  35. K. Kuetemeyer, J. Baumgart, H. Lubatschowski, and A. Heisterkamp, “Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue,” Appl. Phys. B 97(3), 695–699 (2009).
    [Crossref]
  36. D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV radiation,” Chem. Phys. 77(1), 131–143 (1983).
    [Crossref]

2014 (2)

R. Ortiz, S. Moreno-Flores, I. Quintana, M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater Sci Eng C Mater Biol Appl 37, 241–250 (2014).
[Crossref] [PubMed]

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[Crossref]

2013 (4)

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

S. Pérez, E. Rebollar, M. Oujja, M. Martín, and M. Castillejo, “Laser-induced periodic surface structuring of biopolymers,” Appl. Phys., A Mater. Sci. Process. 110(3), 683–690 (2013).
[Crossref]

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[Crossref] [PubMed]

2012 (9)

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

S.-T. Hsu, H. Tan, and Y. L. Yao, “Effect of excimer laser irradiation on crystallinity and chemical bonding of biodegradable polymer,” Polym. Degrad. Stabil. 97(1), 88–97 (2012).
[Crossref]

E. Lizundia, A. Oleaga, A. Salazar, and J. R. Sarasua, “Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites,” Polymer (Guildf.) 53(12), 2412–2421 (2012).
[Crossref]

H. W. Wang, C. W. Cheng, C. W. Li, H. W. Chang, P. H. Wu, and G. J. Wang, “Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation,” Int. J. Nanomedicine 7, 1865–1873 (2012).
[Crossref] [PubMed]

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

B. L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li, “Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds,” Acta Biomater. 8(7), 2648–2658 (2012).
[Crossref] [PubMed]

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro Nanoengineering. 7(2), 194–197 (2012).
[Crossref]

M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng. 51(12), 121815 (2012).
[Crossref]

2011 (2)

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, “Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses,” Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011).
[Crossref] [PubMed]

2010 (3)

W. Y. Yeong, H. Yu, K. P. Lim, K. L. G. Ng, Y. C. F. Boey, V. S. Subbu, and L. P. Tan, “Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer,” Tissue Eng. Part C Methods 16(5), 1011–1021 (2010).
[Crossref] [PubMed]

C. J. Bettinger and Z. Bao, “Organic thin-film transistors fabricated on resorbable biomaterial substrates,” Adv. Mater. 22(5), 651–655 (2010).
[Crossref] [PubMed]

L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Farè, “Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development,” Acta Biomater. 6(6), 1948–1957 (2010).
[Crossref] [PubMed]

2009 (1)

K. Kuetemeyer, J. Baumgart, H. Lubatschowski, and A. Heisterkamp, “Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue,” Appl. Phys. B 97(3), 695–699 (2009).
[Crossref]

2008 (2)

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[Crossref] [PubMed]

2005 (3)

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

C. A. Aguilar, Y. Lu, S. Mao, and S. Chen, “Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers,” Biomaterials 26(36), 7642–7649 (2005).
[Crossref] [PubMed]

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26(7), 763–769 (2005).
[Crossref] [PubMed]

2004 (1)

Y. Lu and S. C. Chen, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Adv. Drug Deliv. Rev. 56(11), 1621–1633 (2004).
[Crossref] [PubMed]

2003 (2)

G. Vozzi, C. Flaim, A. Ahluwalia, and S. Bhatia, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials 24(14), 2533–2540 (2003).
[Crossref] [PubMed]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

2002 (1)

É. Kiss, I. Bertóti, and E. I. Vargha-Butler, “XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films,” J. Colloid Interface Sci. 245(1), 91–98 (2002).
[Crossref] [PubMed]

2001 (1)

B. L. Seal, T. C. Otero, and A. Panitch, “Polymeric biomaterials for tissue and organ regeneration,” Mater. Sci. Eng. 34(4-5), 147–230 (2001).
[Crossref]

1999 (1)

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), 395–398 (1999).
[Crossref]

1993 (1)

M. Bolle and S. Lazare, “Large scale excimer laser production on polymer surfaces of submicron periodic structures,” Appl. Surf. Sci. 69, 31–37 (1993).
[Crossref]

1983 (1)

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV radiation,” Chem. Phys. 77(1), 131–143 (1983).
[Crossref]

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688 (1965).
[Crossref]

Abe, N.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[Crossref]

Aguilar, C. A.

C. A. Aguilar, Y. Lu, S. Mao, and S. Chen, “Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers,” Biomaterials 26(36), 7642–7649 (2005).
[Crossref] [PubMed]

Ahluwalia, A.

G. Vozzi, C. Flaim, A. Ahluwalia, and S. Bhatia, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials 24(14), 2533–2540 (2003).
[Crossref] [PubMed]

Ahsan, M. S.

M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng. 51(12), 121815 (2012).
[Crossref]

Altomare, L.

L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Farè, “Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development,” Acta Biomater. 6(6), 1948–1957 (2010).
[Crossref] [PubMed]

Aoki, S.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[Crossref]

Arai, A.

Audouard, E.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, “Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses,” Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011).
[Crossref] [PubMed]

Bao, Z.

C. J. Bettinger and Z. Bao, “Organic thin-film transistors fabricated on resorbable biomaterial substrates,” Adv. Mater. 22(5), 651–655 (2010).
[Crossref] [PubMed]

Baudach, S.

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), 395–398 (1999).
[Crossref]

Baumgart, J.

K. Kuetemeyer, J. Baumgart, H. Lubatschowski, and A. Heisterkamp, “Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue,” Appl. Phys. B 97(3), 695–699 (2009).
[Crossref]

Bertóti, I.

É. Kiss, I. Bertóti, and E. I. Vargha-Butler, “XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films,” J. Colloid Interface Sci. 245(1), 91–98 (2002).
[Crossref] [PubMed]

Bettinger, C. J.

C. J. Bettinger and Z. Bao, “Organic thin-film transistors fabricated on resorbable biomaterial substrates,” Adv. Mater. 22(5), 651–655 (2010).
[Crossref] [PubMed]

Bhatia, S.

G. Vozzi, C. Flaim, A. Ahluwalia, and S. Bhatia, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials 24(14), 2533–2540 (2003).
[Crossref] [PubMed]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688 (1965).
[Crossref]

Boey, F. Y. C.

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

Boey, Y. C. F.

W. Y. Yeong, H. Yu, K. P. Lim, K. L. G. Ng, Y. C. F. Boey, V. S. Subbu, and L. P. Tan, “Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer,” Tissue Eng. Part C Methods 16(5), 1011–1021 (2010).
[Crossref] [PubMed]

Bolle, M.

M. Bolle and S. Lazare, “Large scale excimer laser production on polymer surfaces of submicron periodic structures,” Appl. Surf. Sci. 69, 31–37 (1993).
[Crossref]

Bonse, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), 395–398 (1999).
[Crossref]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Bovatsek, J.

Castillejo, M.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

S. Pérez, E. Rebollar, M. Oujja, M. Martín, and M. Castillejo, “Laser-induced periodic surface structuring of biopolymers,” Appl. Phys., A Mater. Sci. Process. 110(3), 683–690 (2013).
[Crossref]

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[Crossref] [PubMed]

Chang, H. W.

H. W. Wang, C. W. Cheng, C. W. Li, H. W. Chang, P. H. Wu, and G. J. Wang, “Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation,” Int. J. Nanomedicine 7, 1865–1873 (2012).
[Crossref] [PubMed]

Chen, S.

C. A. Aguilar, Y. Lu, S. Mao, and S. Chen, “Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers,” Biomaterials 26(36), 7642–7649 (2005).
[Crossref] [PubMed]

Chen, S. C.

Y. Lu and S. C. Chen, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Adv. Drug Deliv. Rev. 56(11), 1621–1633 (2004).
[Crossref] [PubMed]

Cheng, C. W.

H. W. Wang, C. W. Cheng, C. W. Li, H. W. Chang, P. H. Wu, and G. J. Wang, “Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation,” Int. J. Nanomedicine 7, 1865–1873 (2012).
[Crossref] [PubMed]

Claeyssens, F.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Dai, N.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Domingo, C.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Eaton, S.

Enami, T.

Ezquerra, T. A.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Farè, S.

L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Farè, “Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development,” Acta Biomater. 6(6), 1948–1957 (2010).
[Crossref] [PubMed]

Farsari, M.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Faure, N.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, “Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses,” Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011).
[Crossref] [PubMed]

Flaim, C.

G. Vozzi, C. Flaim, A. Ahluwalia, and S. Bhatia, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials 24(14), 2533–2540 (2003).
[Crossref] [PubMed]

Forster, M.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, “Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses,” Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011).
[Crossref] [PubMed]

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[Crossref] [PubMed]

Fotakis, C.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Fujie, H.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[Crossref]

Gadegaard, N.

L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Farè, “Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development,” Acta Biomater. 6(6), 1948–1957 (2010).
[Crossref] [PubMed]

Gaspard, S.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[Crossref] [PubMed]

Gill, A. A.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Goh, S. W.

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26(7), 763–769 (2005).
[Crossref] [PubMed]

Grigoropoulos, C.

B. L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li, “Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds,” Acta Biomater. 8(7), 2648–2658 (2012).
[Crossref] [PubMed]

Hanawa, T.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[Crossref]

Hashida, M.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro Nanoengineering. 7(2), 194–197 (2012).
[Crossref]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Haycock, J. W.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Heisterkamp, A.

K. Kuetemeyer, J. Baumgart, H. Lubatschowski, and A. Heisterkamp, “Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue,” Appl. Phys. B 97(3), 695–699 (2009).
[Crossref]

Herman, P.

Hernández, M.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Höhm, S.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

Hong, M.

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26(7), 763–769 (2005).
[Crossref] [PubMed]

Hsu, S.-T.

S.-T. Hsu, H. Tan, and Y. L. Yao, “Effect of excimer laser irradiation on crystallinity and chemical bonding of biodegradable polymer,” Polym. Degrad. Stabil. 97(1), 88–97 (2012).
[Crossref]

Huber, C.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[Crossref] [PubMed]

Ikuta, Y.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro Nanoengineering. 7(2), 194–197 (2012).
[Crossref]

Jeon, H.

B. L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li, “Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds,” Acta Biomater. 8(7), 2648–2658 (2012).
[Crossref] [PubMed]

Kautek, W.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, “Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses,” Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011).
[Crossref] [PubMed]

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[Crossref] [PubMed]

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), 395–398 (1999).
[Crossref]

Kiss, É.

É. Kiss, I. Bertóti, and E. I. Vargha-Butler, “XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films,” J. Colloid Interface Sci. 245(1), 91–98 (2002).
[Crossref] [PubMed]

Krüger, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

Kuetemeyer, K.

K. Kuetemeyer, J. Baumgart, H. Lubatschowski, and A. Heisterkamp, “Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue,” Appl. Phys. B 97(3), 695–699 (2009).
[Crossref]

Lan, B.

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26(7), 763–769 (2005).
[Crossref] [PubMed]

Lazare, S.

M. Bolle and S. Lazare, “Large scale excimer laser production on polymer surfaces of submicron periodic structures,” Appl. Surf. Sci. 69, 31–37 (1993).
[Crossref]

Lee, B. L.-P.

B. L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li, “Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds,” Acta Biomater. 8(7), 2648–2658 (2012).
[Crossref] [PubMed]

Lee, M. S.

M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng. 51(12), 121815 (2012).
[Crossref]

Leong, D. T.

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

Li, C. W.

H. W. Wang, C. W. Cheng, C. W. Li, H. W. Chang, P. H. Wu, and G. J. Wang, “Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation,” Int. J. Nanomedicine 7, 1865–1873 (2012).
[Crossref] [PubMed]

Li, H.

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

Li, S.

B. L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li, “Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds,” Acta Biomater. 8(7), 2648–2658 (2012).
[Crossref] [PubMed]

Li, Y.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Lim, K. P.

W. Y. Yeong, H. Yu, K. P. Lim, K. L. G. Ng, Y. C. F. Boey, V. S. Subbu, and L. P. Tan, “Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer,” Tissue Eng. Part C Methods 16(5), 1011–1021 (2010).
[Crossref] [PubMed]

Lizundia, E.

E. Lizundia, A. Oleaga, A. Salazar, and J. R. Sarasua, “Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites,” Polymer (Guildf.) 53(12), 2412–2421 (2012).
[Crossref]

Lu, P.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Lu, Y.

C. A. Aguilar, Y. Lu, S. Mao, and S. Chen, “Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers,” Biomaterials 26(36), 7642–7649 (2005).
[Crossref] [PubMed]

Y. Lu and S. C. Chen, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Adv. Drug Deliv. Rev. 56(11), 1621–1633 (2004).
[Crossref] [PubMed]

Lubatschowski, H.

K. Kuetemeyer, J. Baumgart, H. Lubatschowski, and A. Heisterkamp, “Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue,” Appl. Phys. B 97(3), 695–699 (2009).
[Crossref]

Mao, S.

C. A. Aguilar, Y. Lu, S. Mao, and S. Chen, “Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers,” Biomaterials 26(36), 7642–7649 (2005).
[Crossref] [PubMed]

Martín, M.

S. Pérez, E. Rebollar, M. Oujja, M. Martín, and M. Castillejo, “Laser-induced periodic surface structuring of biopolymers,” Appl. Phys., A Mater. Sci. Process. 110(3), 683–690 (2013).
[Crossref]

Martín-Fabiani, I.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Matsushita, N.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[Crossref]

Mazur, E.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[Crossref] [PubMed]

Melissinaki, V.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Miyasaka, Y.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro Nanoengineering. 7(2), 194–197 (2012).
[Crossref]

Moreno, P.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Moreno-Flores, S.

R. Ortiz, S. Moreno-Flores, I. Quintana, M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater Sci Eng C Mater Biol Appl 37, 241–250 (2014).
[Crossref] [PubMed]

Nagai, A.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[Crossref]

Nakamura, N.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[Crossref]

Ng, G. K. L.

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

Ng, K. L. G.

W. Y. Yeong, H. Yu, K. P. Lim, K. L. G. Ng, Y. C. F. Boey, V. S. Subbu, and L. P. Tan, “Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer,” Tissue Eng. Part C Methods 16(5), 1011–1021 (2010).
[Crossref] [PubMed]

Ng, K. W.

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

Nikogosyan, D. N.

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV radiation,” Chem. Phys. 77(1), 131–143 (1983).
[Crossref]

Obara, G.

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[Crossref] [PubMed]

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

Obara, M.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[Crossref] [PubMed]

Oleaga, A.

E. Lizundia, A. Oleaga, A. Salazar, and J. R. Sarasua, “Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites,” Polymer (Guildf.) 53(12), 2412–2421 (2012).
[Crossref]

Oraevsky, A. A.

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV radiation,” Chem. Phys. 77(1), 131–143 (1983).
[Crossref]

Ortega, I.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Ortiz, R.

R. Ortiz, S. Moreno-Flores, I. Quintana, M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater Sci Eng C Mater Biol Appl 37, 241–250 (2014).
[Crossref] [PubMed]

Otani, K.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro Nanoengineering. 7(2), 194–197 (2012).
[Crossref]

Otero, T. C.

B. L. Seal, T. C. Otero, and A. Panitch, “Polymeric biomaterials for tissue and organ regeneration,” Mater. Sci. Eng. 34(4-5), 147–230 (2001).
[Crossref]

Oujja, M.

S. Pérez, E. Rebollar, M. Oujja, M. Martín, and M. Castillejo, “Laser-induced periodic surface structuring of biopolymers,” Appl. Phys., A Mater. Sci. Process. 110(3), 683–690 (2013).
[Crossref]

Oya, K.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[Crossref]

Panitch, A.

B. L. Seal, T. C. Otero, and A. Panitch, “Polymeric biomaterials for tissue and organ regeneration,” Mater. Sci. Eng. 34(4-5), 147–230 (2001).
[Crossref]

Pérez, S.

S. Pérez, E. Rebollar, M. Oujja, M. Martín, and M. Castillejo, “Laser-induced periodic surface structuring of biopolymers,” Appl. Phys., A Mater. Sci. Process. 110(3), 683–690 (2013).
[Crossref]

Quintana, I.

R. Ortiz, S. Moreno-Flores, I. Quintana, M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater Sci Eng C Mater Biol Appl 37, 241–250 (2014).
[Crossref] [PubMed]

Ranella, A.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Rebollar, E.

S. Pérez, E. Rebollar, M. Oujja, M. Martín, and M. Castillejo, “Laser-induced periodic surface structuring of biopolymers,” Appl. Phys., A Mater. Sci. Process. 110(3), 683–690 (2013).
[Crossref]

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Rosenfeld, A.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

Rueda, D. R.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Rupasov, V. I.

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV radiation,” Chem. Phys. 77(1), 131–143 (1983).
[Crossref]

Sakabe, S.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro Nanoengineering. 7(2), 194–197 (2012).
[Crossref]

Salazar, A.

E. Lizundia, A. Oleaga, A. Salazar, and J. R. Sarasua, “Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites,” Polymer (Guildf.) 53(12), 2412–2421 (2012).
[Crossref]

Sarasua, J. R.

R. Ortiz, S. Moreno-Flores, I. Quintana, M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater Sci Eng C Mater Biol Appl 37, 241–250 (2014).
[Crossref] [PubMed]

E. Lizundia, A. Oleaga, A. Salazar, and J. R. Sarasua, “Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites,” Polymer (Guildf.) 53(12), 2412–2421 (2012).
[Crossref]

Seal, B. L.

B. L. Seal, T. C. Otero, and A. Panitch, “Polymeric biomaterials for tissue and organ regeneration,” Mater. Sci. Eng. 34(4-5), 147–230 (2001).
[Crossref]

Shah, L.

Shimizu, H.

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[Crossref] [PubMed]

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

Shimomura, K.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[Crossref]

Shinonaga, T.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[Crossref]

Stoian, R.

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, “Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses,” Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011).
[Crossref] [PubMed]

Subbu, V. S.

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

W. Y. Yeong, H. Yu, K. P. Lim, K. L. G. Ng, Y. C. F. Boey, V. S. Subbu, and L. P. Tan, “Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer,” Tissue Eng. Part C Methods 16(5), 1011–1021 (2010).
[Crossref] [PubMed]

Sugita, N.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[Crossref]

Suzuki, K.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[Crossref]

Tan, H.

S.-T. Hsu, H. Tan, and Y. L. Yao, “Effect of excimer laser irradiation on crystallinity and chemical bonding of biodegradable polymer,” Polym. Degrad. Stabil. 97(1), 88–97 (2012).
[Crossref]

Tan, L. P.

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

W. Y. Yeong, H. Yu, K. P. Lim, K. L. G. Ng, Y. C. F. Boey, V. S. Subbu, and L. P. Tan, “Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer,” Tissue Eng. Part C Methods 16(5), 1011–1021 (2010).
[Crossref] [PubMed]

Tanzi, M. C.

L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Farè, “Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development,” Acta Biomater. 6(6), 1948–1957 (2010).
[Crossref] [PubMed]

Teoh, S. H.

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26(7), 763–769 (2005).
[Crossref] [PubMed]

Terakawa, M.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[Crossref] [PubMed]

Tiaw, K. S.

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26(7), 763–769 (2005).
[Crossref] [PubMed]

Toca-Herrera, J. L.

R. Ortiz, S. Moreno-Flores, I. Quintana, M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater Sci Eng C Mater Biol Appl 37, 241–250 (2014).
[Crossref] [PubMed]

Tokita, S.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro Nanoengineering. 7(2), 194–197 (2012).
[Crossref]

Trettenhahn, G.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[Crossref] [PubMed]

Tsukamoto, M.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[Crossref]

Vamvakaki, M.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Vargha-Butler, E. I.

É. Kiss, I. Bertóti, and E. I. Vargha-Butler, “XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films,” J. Colloid Interface Sci. 245(1), 91–98 (2002).
[Crossref] [PubMed]

Vázquez de Aldana, J. R.

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Visai, L.

L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Farè, “Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development,” Acta Biomater. 6(6), 1948–1957 (2010).
[Crossref] [PubMed]

Vivanco, M.

R. Ortiz, S. Moreno-Flores, I. Quintana, M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater Sci Eng C Mater Biol Appl 37, 241–250 (2014).
[Crossref] [PubMed]

Vozzi, G.

G. Vozzi, C. Flaim, A. Ahluwalia, and S. Bhatia, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials 24(14), 2533–2540 (2003).
[Crossref] [PubMed]

Wang, A.

B. L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li, “Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds,” Acta Biomater. 8(7), 2648–2658 (2012).
[Crossref] [PubMed]

Wang, G. J.

H. W. Wang, C. W. Cheng, C. W. Li, H. W. Chang, P. H. Wu, and G. J. Wang, “Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation,” Int. J. Nanomedicine 7, 1865–1873 (2012).
[Crossref] [PubMed]

Wang, H. W.

H. W. Wang, C. W. Cheng, C. W. Li, H. W. Chang, P. H. Wu, and G. J. Wang, “Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation,” Int. J. Nanomedicine 7, 1865–1873 (2012).
[Crossref] [PubMed]

Wang, X.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Wang, Y.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Wang, Z.

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26(7), 763–769 (2005).
[Crossref] [PubMed]

Wen, F.

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

Wong, Y. S.

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

Wu, P. H.

H. W. Wang, C. W. Cheng, C. W. Li, H. W. Chang, P. H. Wu, and G. J. Wang, “Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation,” Int. J. Nanomedicine 7, 1865–1873 (2012).
[Crossref] [PubMed]

Xie, G.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[Crossref]

Yamashita, K.

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[Crossref]

Yan, Z.

B. L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li, “Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds,” Acta Biomater. 8(7), 2648–2658 (2012).
[Crossref] [PubMed]

Yao, Y. L.

S.-T. Hsu, H. Tan, and Y. L. Yao, “Effect of excimer laser irradiation on crystallinity and chemical bonding of biodegradable polymer,” Polym. Degrad. Stabil. 97(1), 88–97 (2012).
[Crossref]

Yeong, W. Y.

W. Y. Yeong, H. Yu, K. P. Lim, K. L. G. Ng, Y. C. F. Boey, V. S. Subbu, and L. P. Tan, “Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer,” Tissue Eng. Part C Methods 16(5), 1011–1021 (2010).
[Crossref] [PubMed]

Yoshino, F.

Yu, B.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Yu, H.

W. Y. Yeong, H. Yu, K. P. Lim, K. L. G. Ng, Y. C. F. Boey, V. S. Subbu, and L. P. Tan, “Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer,” Tissue Eng. Part C Methods 16(5), 1011–1021 (2010).
[Crossref] [PubMed]

Yu, J.

B. L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li, “Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds,” Acta Biomater. 8(7), 2648–2658 (2012).
[Crossref] [PubMed]

Zafiu, C.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[Crossref] [PubMed]

Zhang, H.

Zheng, Q.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Acta Biomater. (3)

L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Farè, “Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development,” Acta Biomater. 6(6), 1948–1957 (2010).
[Crossref] [PubMed]

B. L.-P. Lee, H. Jeon, A. Wang, Z. Yan, J. Yu, C. Grigoropoulos, and S. Li, “Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds,” Acta Biomater. 8(7), 2648–2658 (2012).
[Crossref] [PubMed]

H. Li, F. Wen, Y. S. Wong, F. Y. C. Boey, V. S. Subbu, D. T. Leong, K. W. Ng, G. K. L. Ng, and L. P. Tan, “Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells,” Acta Biomater. 8(2), 531–539 (2012).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

Y. Lu and S. C. Chen, “Micro and nano-fabrication of biodegradable polymers for drug delivery,” Adv. Drug Deliv. Rev. 56(11), 1621–1633 (2004).
[Crossref] [PubMed]

Adv. Mater. (1)

C. J. Bettinger and Z. Bao, “Organic thin-film transistors fabricated on resorbable biomaterial substrates,” Adv. Mater. 22(5), 651–655 (2010).
[Crossref] [PubMed]

Appl. Phys. B (1)

K. Kuetemeyer, J. Baumgart, H. Lubatschowski, and A. Heisterkamp, “Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue,” Appl. Phys. B 97(3), 695–699 (2009).
[Crossref]

Appl. Phys. Express (1)

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
[Crossref]

Appl. Phys. Lett. (1)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 69(7), 395–398 (1999).
[Crossref]

S. Pérez, E. Rebollar, M. Oujja, M. Martín, and M. Castillejo, “Laser-induced periodic surface structuring of biopolymers,” Appl. Phys., A Mater. Sci. Process. 110(3), 683–690 (2013).
[Crossref]

Appl. Surf. Sci. (2)

T. Shinonaga, M. Tsukamoto, A. Nagai, K. Yamashita, T. Hanawa, N. Matsushita, G. Xie, and N. Abe, “Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser,” Appl. Surf. Sci. 288, 649–653 (2014).
[Crossref]

M. Bolle and S. Lazare, “Large scale excimer laser production on polymer surfaces of submicron periodic structures,” Appl. Surf. Sci. 69, 31–37 (1993).
[Crossref]

Biofabrication (1)

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011).
[Crossref] [PubMed]

Biomaterials (3)

G. Vozzi, C. Flaim, A. Ahluwalia, and S. Bhatia, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials 24(14), 2533–2540 (2003).
[Crossref] [PubMed]

C. A. Aguilar, Y. Lu, S. Mao, and S. Chen, “Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers,” Biomaterials 26(36), 7642–7649 (2005).
[Crossref] [PubMed]

K. S. Tiaw, S. W. Goh, M. Hong, Z. Wang, B. Lan, and S. H. Teoh, “Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications,” Biomaterials 26(7), 763–769 (2005).
[Crossref] [PubMed]

Chem. Phys. (1)

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser UV radiation,” Chem. Phys. 77(1), 131–143 (1983).
[Crossref]

Int. J. Nanomedicine (1)

H. W. Wang, C. W. Cheng, C. W. Li, H. W. Chang, P. H. Wu, and G. J. Wang, “Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation,” Int. J. Nanomedicine 7, 1865–1873 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (2)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688 (1965).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

J. Colloid Interface Sci. (1)

É. Kiss, I. Bertóti, and E. I. Vargha-Butler, “XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films,” J. Colloid Interface Sci. 245(1), 91–98 (2002).
[Crossref] [PubMed]

J. Laser Micro Nanoengineering. (1)

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro Nanoengineering. 7(2), 194–197 (2012).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[Crossref]

Mater Sci Eng C Mater Biol Appl (1)

R. Ortiz, S. Moreno-Flores, I. Quintana, M. Vivanco, J. R. Sarasua, and J. L. Toca-Herrera, “Ultra-fast laser microprocessing of medical polymers for cell engineering applications,” Mater Sci Eng C Mater Biol Appl 37, 241–250 (2014).
[Crossref] [PubMed]

Mater. Sci. Eng. (1)

B. L. Seal, T. C. Otero, and A. Panitch, “Polymeric biomaterials for tissue and organ regeneration,” Mater. Sci. Eng. 34(4-5), 147–230 (2001).
[Crossref]

Opt. Eng. (1)

M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng. 51(12), 121815 (2012).
[Crossref]

Opt. Express (2)

Phys. Chem. Chem. Phys. (3)

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[Crossref] [PubMed]

M. Forster, W. Kautek, N. Faure, E. Audouard, and R. Stoian, “Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses,” Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011).
[Crossref] [PubMed]

E. Rebollar, J. R. Vázquez de Aldana, I. Martín-Fabiani, M. Hernández, D. R. Rueda, T. A. Ezquerra, C. Domingo, P. Moreno, and M. Castillejo, “Assessment of femtosecond laser induced periodic surface structures on polymer films,” Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013).
[Crossref] [PubMed]

Polym. Degrad. Stabil. (1)

S.-T. Hsu, H. Tan, and Y. L. Yao, “Effect of excimer laser irradiation on crystallinity and chemical bonding of biodegradable polymer,” Polym. Degrad. Stabil. 97(1), 88–97 (2012).
[Crossref]

Polymer (Guildf.) (1)

E. Lizundia, A. Oleaga, A. Salazar, and J. R. Sarasua, “Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites,” Polymer (Guildf.) 53(12), 2412–2421 (2012).
[Crossref]

Tissue Eng. Part C Methods (1)

W. Y. Yeong, H. Yu, K. P. Lim, K. L. G. Ng, Y. C. F. Boey, V. S. Subbu, and L. P. Tan, “Multiscale topological guidance for cell alignment via direct laser writing on biodegradable polymer,” Tissue Eng. Part C Methods 16(5), 1011–1021 (2010).
[Crossref] [PubMed]

Other (1)

R. Auras, L. Lim, S. Selke, and H. Tsuji, Poly(Lactic Acid) Synthesis, Structures, Properties, Processing, and Applications (John Wiley & Sons, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Dependences of ablated area on laser fluences for extrapolating ablation thresholds. The ablated area was determined by the average of 5 samples under irradiation conditions. (a) A single pulse at 800 nm, (b) 300 pulses at 800 nm, and (c) 300 pulses at 400 nm. Error bars indicate standard deviation.
Fig. 2
Fig. 2 XPS analysis results of PLLA surface before and after laser irradiation. (a) Wide XPS spectra, (b) C1s spectra, and (c) O1s spectra. Black lines, red lines, and blue lines indicate PLLA surface before laser irradiation, PLLA surface after irradiation at 800 nm at 1.0 J/cm2, and PLLA surface after irradiation at 400 nm at 0.30 J/cm2, respectively. The scanning speed was 66 μm/s for (b) and (c).
Fig. 3
Fig. 3 SEM images of LIPSS formed on PLLA: (a) Laser irradiated surface at 800 nm, 1.0 J/cm2, 10000 pulses and (b) that at 400 nm, 0.20 J/cm2, 5000 pulses. Average periodicities of LIPSS (HSFL) were measured to be 149 nm (a) and 101 nm (b). Scale bars represent 5 μm.
Fig. 4
Fig. 4 Dependences of average periodicity of LIPSS formed on PLLA on (a) number of laser pulses and on (b) laser fluence. Values show an average of five measurements ± standard deviation.
Fig. 5
Fig. 5 SEM images of typical PLLA surface before and after laser irradiation at 400 nm: (a) Before laser irradiation, (b, c) after laser irradiation at repetition rate of 100 Hz, and (d,e,f) after laser irradiation at repetition rate of 1 kHz. (b, e) Laser ablation without LIPSS formation. (c, f) LIPSS was observed in the irradiated area. (d) Modification without significant laser ablation and LIPSS formation. Laser irradiation conditions were 0.25 J/cm2 for 3000 pulses (b), 0.20 J/cm2 for 5000 pulses (c), 0.10 J/cm2 for 5000 pulses (d), 0.30 J/cm2 for 1000 pulses (e), and 0.20 J/cm2 for 5000 pulses (f). Scale bars represent 10 μm.
Fig. 6
Fig. 6 Surface conditions after laser irradiation at 400 nm with varying number of pulses and laser fluence. (a) Repetition rate of 100 Hz. (b) Repetition rate of 1 kHz. Results are categorized to ablation(♦), LIPSS formation(●), modification(∆) and no modification(x).
Fig. 7
Fig. 7 Large magnification SEM images of PLLA surface after laser irradiation at 100 Hz, 0.20 J/cm2 with different numbers of pulses: (a) 5000 pulses and (b) 12000 pulses. Scale bars represent 1 μm.

Metrics