Abstract

Glass welding by ultra-short laser pulses provides hermetic welding seams with high mechanical stability. The required distance between the samples must be extremely small (<100nm), otherwise cracks will form inside the seam reducing its stability. However, to achieve such small gaps the roughness of the samples must be small enough necessitating additional polishing. Additionally, Van-der-Waals forces grow substantial at such distances thereby effectively preventing sample movement and an easy and precise sample alignment. Here we present a method utilizing ultra-short laser pulses which exploits a volume expansion of irradiated glass enabling the joining of glass plates across gaps of up to 1µm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength

K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt
Appl. Opt. 50(13) 1941-1944 (2011)

Dendrite-joining of air-gap-separated PMMA substrates using ultrashort laser pulses

Yusuke Mizuguchi, Takayuki Tamaki, Takashi Fukuda, Koji Hatanaka, Saulius Juodkazis, and Wataru Watanabe
Opt. Mater. Express 7(7) 2141-2149 (2017)

Avoiding the requirement for pre-existing optical contact during picosecond laser glass-to-glass welding

Jianyong Chen, Richard M. Carter, Robert R. Thomson, and Duncan P. Hand
Opt. Express 23(14) 18645-18657 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Naumann and G. Schröder, Bauelemente der Optik (Optical construction elements) (Hanser Verlag, 1992) (in German).
  2. H. Banse, Laserstrahllöten – Technologie zum Aufbau optischer Systeme (Laser beam soldering - technology for the setup of optical systems), Ph.D-thesis, University Jena, Germany, (in German) (2005).
  3. V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(85), 85 (2001).
  4. S. Hecht-Mijic, A. Harnisch, D. Huelsenberg, S. Schundau, J. Pfeifer, and T. Schroeter: “Thermisches Bonden von Bauteilen aus mikrostrukturiertem Glas,” (Thermal bonding of elements made of micro-structured glass), Mat.-wiss. u. Werkstofftech. 34, 645 (in German), (2003) .
  5. H. Maruo, I. Miyamoto, and Y. Arata, “CO2 laser welding of ceramics,” 1st International Laser Processing Conference (Laser Institute of America, 1981).
  6. F. Grünwald, Fertigungsverfahren in der Gerätetechnik (Manufacture processes in device engineering) (Carl Hanser Verlag, 1985) (in German).
  7. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
    [Crossref]
  8. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
    [Crossref] [PubMed]
  9. G. Haselhorst, Corporate Machinery and Production Technology, Process and Technology Development, Schott AG (manufacturer of D263 glass), Hattenbergstrasse 10, 55122 Mainz, Germany (personal communication, 2010).
  10. Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of Molten Zone in Micro-welding of Glass by Picosecond Pulsed Laser,” JLMN-Journal of Laser Micro/Nanoenginneering. 8(1), 1–6 (2013).
  11. K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt. 50(13), 1941–1944 (2011).
    [Crossref] [PubMed]
  12. E. Sharon and J. Fineberg, “The dynamics of fast fracture,” Adv. Eng. Mater. 1(2), 119–122 (1999).
    [Crossref]
  13. D. Hélie, S. Gouin, and R. Vallée, “Assembling an endcap to optical fibers by femtosecond laser welding and milling,” Opt. Mater. Express 3(10), 1742–1754 (2013).
    [Crossref]
  14. Z. Tang, T. Shi, G. Liao, and S. Liu, “Modeling the formation of spontaneous wafer direct bonding under low temperature,” Microelectron. Eng. 85(8), 1754–1757 (2008).
    [Crossref]
  15. I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 06, 187–208 (2013), doi:.
    [Crossref]
  16. H. Scholze, Glass. Nature, Structure and Properties (Springer-Verlag, 1994).
  17. Heraeus Group, Heraeus Quarzglas. (Online citation on July 1st 2014). http://heraeus-quarzglas.de/en/quarzglas/mechanicalproperties/Mechanical_properties.aspx
  18. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
    [Crossref]
  19. T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “ In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass, ” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
    [Crossref]
  20. Physical Chemistry: Density, Standard Conditions for Temperature and Pressure, Vapor Pressure, Fick's Laws of Diffusion, Electrochemistry (Books LLC, 2010).
  21. K. Cvecek, S. Dehmel, I. Miyamoto, and M. Schmidt, “Ridge Formation on the Surface of Fused Silica processed by Ultra-Short Laser Pulses,” In Proc. of LPM 2014, Vilnius, Paper Tu1-O-5, (2014).
  22. K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
    [Crossref] [PubMed]
  23. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  24. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
    [Crossref]
  25. Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology (John Wiley & Sons, 1999).
  26. I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of Shear Strength and Bonding Energy of Laser Produced Welding Seams in Glass,” JLMN-Journal of Laser Micro/ Nanoenginneering. 7(3), 279–283 (2012).
  27. US Patent US20100084384
  28. Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
    [Crossref]
  29. Y. Ozeki, H. Yamamoto, H. Yamaguchi, and K. Itoh, “Hermetic sealing of ceramic packages with glass by ultrafast laser welding technique,“ In: Proc. LAMP 2009, Paper MoOL 1-7, 09-115, Kobe, Japan, (2009).

2014 (1)

2013 (3)

D. Hélie, S. Gouin, and R. Vallée, “Assembling an endcap to optical fibers by femtosecond laser welding and milling,” Opt. Mater. Express 3(10), 1742–1754 (2013).
[Crossref]

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of Molten Zone in Micro-welding of Glass by Picosecond Pulsed Laser,” JLMN-Journal of Laser Micro/Nanoenginneering. 8(1), 1–6 (2013).

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 06, 187–208 (2013), doi:.
[Crossref]

2012 (2)

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “ In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass, ” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of Shear Strength and Bonding Energy of Laser Produced Welding Seams in Glass,” JLMN-Journal of Laser Micro/ Nanoenginneering. 7(3), 279–283 (2012).

2011 (1)

2008 (3)

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[Crossref]

Z. Tang, T. Shi, G. Liao, and S. Liu, “Modeling the formation of spontaneous wafer direct bonding under low temperature,” Microelectron. Eng. 85(8), 1754–1757 (2008).
[Crossref]

2006 (1)

2005 (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

2001 (1)

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(85), 85 (2001).

1999 (2)

E. Sharon and J. Fineberg, “The dynamics of fast fracture,” Adv. Eng. Mater. 1(2), 119–122 (1999).
[Crossref]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[Crossref]

1996 (1)

Alexeev, I.

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of Shear Strength and Bonding Energy of Laser Produced Welding Seams in Glass,” JLMN-Journal of Laser Micro/ Nanoenginneering. 7(3), 279–283 (2012).

Banks, P. S.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[Crossref]

Cvecek, K.

K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
[Crossref] [PubMed]

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of Molten Zone in Micro-welding of Glass by Picosecond Pulsed Laser,” JLMN-Journal of Laser Micro/Nanoenginneering. 8(1), 1–6 (2013).

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 06, 187–208 (2013), doi:.
[Crossref]

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of Shear Strength and Bonding Energy of Laser Produced Welding Seams in Glass,” JLMN-Journal of Laser Micro/ Nanoenginneering. 7(3), 279–283 (2012).

K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt. 50(13), 1941–1944 (2011).
[Crossref] [PubMed]

Davis, K. M.

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[Crossref]

Fineberg, J.

E. Sharon and J. Fineberg, “The dynamics of fast fracture,” Adv. Eng. Mater. 1(2), 119–122 (1999).
[Crossref]

Frick, T.

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of Shear Strength and Bonding Energy of Laser Produced Welding Seams in Glass,” JLMN-Journal of Laser Micro/ Nanoenginneering. 7(3), 279–283 (2012).

K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt. 50(13), 1941–1944 (2011).
[Crossref] [PubMed]

Gouin, S.

Greco, V.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(85), 85 (2001).

Hélie, D.

Hirao, K.

Hirose, A.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Inoue, T.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Itoh, K.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “ In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass, ” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Krol, D. M.

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[Crossref]

Liao, G.

Z. Tang, T. Shi, G. Liao, and S. Liu, “Modeling the formation of spontaneous wafer direct bonding under low temperature,” Microelectron. Eng. 85(8), 1754–1757 (2008).
[Crossref]

Liu, S.

Z. Tang, T. Shi, G. Liao, and S. Liu, “Modeling the formation of spontaneous wafer direct bonding under low temperature,” Microelectron. Eng. 85(8), 1754–1757 (2008).
[Crossref]

Marchesini, F.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(85), 85 (2001).

Matsumoto, M.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “ In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass, ” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

Miura, K.

Miyamoto, I.

K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
[Crossref] [PubMed]

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of Molten Zone in Micro-welding of Glass by Picosecond Pulsed Laser,” JLMN-Journal of Laser Micro/Nanoenginneering. 8(1), 1–6 (2013).

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 06, 187–208 (2013), doi:.
[Crossref]

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of Shear Strength and Bonding Energy of Laser Produced Welding Seams in Glass,” JLMN-Journal of Laser Micro/ Nanoenginneering. 7(3), 279–283 (2012).

K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt. 50(13), 1941–1944 (2011).
[Crossref] [PubMed]

Molesini, G.

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(85), 85 (2001).

Nishii, J.

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Nishiuchi, S.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Okada, A.

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of Molten Zone in Micro-welding of Glass by Picosecond Pulsed Laser,” JLMN-Journal of Laser Micro/Nanoenginneering. 8(1), 1–6 (2013).

Okamoto, Y.

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 06, 187–208 (2013), doi:.
[Crossref]

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of Molten Zone in Micro-welding of Glass by Picosecond Pulsed Laser,” JLMN-Journal of Laser Micro/Nanoenginneering. 8(1), 1–6 (2013).

Onda, S.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Ozeki, Y.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “ In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass, ” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Perry, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[Crossref]

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[Crossref]

Sano, T.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Schmidt, C.

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of Shear Strength and Bonding Energy of Laser Produced Welding Seams in Glass,” JLMN-Journal of Laser Micro/ Nanoenginneering. 7(3), 279–283 (2012).

Schmidt, M.

K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 06, 187–208 (2013), doi:.
[Crossref]

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of Molten Zone in Micro-welding of Glass by Picosecond Pulsed Laser,” JLMN-Journal of Laser Micro/Nanoenginneering. 8(1), 1–6 (2013).

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of Shear Strength and Bonding Energy of Laser Produced Welding Seams in Glass,” JLMN-Journal of Laser Micro/ Nanoenginneering. 7(3), 279–283 (2012).

K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, and M. Schmidt, “Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength,” Appl. Opt. 50(13), 1941–1944 (2011).
[Crossref] [PubMed]

Sharon, E.

E. Sharon and J. Fineberg, “The dynamics of fast fracture,” Adv. Eng. Mater. 1(2), 119–122 (1999).
[Crossref]

Shi, T.

Z. Tang, T. Shi, G. Liao, and S. Liu, “Modeling the formation of spontaneous wafer direct bonding under low temperature,” Microelectron. Eng. 85(8), 1754–1757 (2008).
[Crossref]

Strauss, J.

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[Crossref]

Sugimoto, N.

Takahashi, K.

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of Molten Zone in Micro-welding of Glass by Picosecond Pulsed Laser,” JLMN-Journal of Laser Micro/Nanoenginneering. 8(1), 1–6 (2013).

Tamaki, T.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Tang, Z.

Z. Tang, T. Shi, G. Liao, and S. Liu, “Modeling the formation of spontaneous wafer direct bonding under low temperature,” Microelectron. Eng. 85(8), 1754–1757 (2008).
[Crossref]

Vallée, R.

Watanabe, W.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006).
[Crossref] [PubMed]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Wolf, M.

Yamaguchi, H.

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[Crossref]

Yoshino, T.

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “ In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass, ” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

Adv. Eng. Mater. (1)

E. Sharon and J. Fineberg, “The dynamics of fast fracture,” Adv. Eng. Mater. 1(2), 119–122 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct Welding between Copper and Glass Substrates with Femtosecond Laser Pulses,” Appl. Phys. Express 1(8), 082601 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

I. Miyamoto, K. Cvecek, Y. Okamoto, and M. Schmidt, “Internal modification of glass by ultrashort laser pulse and its application to microwelding,” Appl. Phys., A Mater. Sci. Process. 06, 187–208 (2013), doi:.
[Crossref]

J. Appl. Phys. (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultra-short-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[Crossref]

J. Non-Cryst. Solids (1)

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2-9), 416–424 (2008).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

V. Greco, F. Marchesini, and G. Molesini, “Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates,” J. Opt. A, Pure Appl. Opt. 3(85), 85 (2001).

JLMN-Journal of Laser Micro/ Nanoenginneering. (1)

I. Alexeev, K. Cvecek, C. Schmidt, I. Miyamoto, T. Frick, and M. Schmidt, “Characterization of Shear Strength and Bonding Energy of Laser Produced Welding Seams in Glass,” JLMN-Journal of Laser Micro/ Nanoenginneering. 7(3), 279–283 (2012).

JLMN-Journal of Laser Micro/Nanoenginneering. (1)

Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, and M. Schmidt, “Evaluation of Molten Zone in Micro-welding of Glass by Picosecond Pulsed Laser,” JLMN-Journal of Laser Micro/Nanoenginneering. 8(1), 1–6 (2013).

Jpn. J. Appl. Phys. (2)

T. Yoshino, Y. Ozeki, M. Matsumoto, and K. Itoh, “ In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass, ” Jpn. J. Appl. Phys. 51(10R), 102403 (2012).
[Crossref]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(22), L687–L689 (2005).
[Crossref]

Microelectron. Eng. (1)

Z. Tang, T. Shi, G. Liao, and S. Liu, “Modeling the formation of spontaneous wafer direct bonding under low temperature,” Microelectron. Eng. 85(8), 1754–1757 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Other (13)

Physical Chemistry: Density, Standard Conditions for Temperature and Pressure, Vapor Pressure, Fick's Laws of Diffusion, Electrochemistry (Books LLC, 2010).

K. Cvecek, S. Dehmel, I. Miyamoto, and M. Schmidt, “Ridge Formation on the Surface of Fused Silica processed by Ultra-Short Laser Pulses,” In Proc. of LPM 2014, Vilnius, Paper Tu1-O-5, (2014).

G. Haselhorst, Corporate Machinery and Production Technology, Process and Technology Development, Schott AG (manufacturer of D263 glass), Hattenbergstrasse 10, 55122 Mainz, Germany (personal communication, 2010).

H. Naumann and G. Schröder, Bauelemente der Optik (Optical construction elements) (Hanser Verlag, 1992) (in German).

H. Banse, Laserstrahllöten – Technologie zum Aufbau optischer Systeme (Laser beam soldering - technology for the setup of optical systems), Ph.D-thesis, University Jena, Germany, (in German) (2005).

S. Hecht-Mijic, A. Harnisch, D. Huelsenberg, S. Schundau, J. Pfeifer, and T. Schroeter: “Thermisches Bonden von Bauteilen aus mikrostrukturiertem Glas,” (Thermal bonding of elements made of micro-structured glass), Mat.-wiss. u. Werkstofftech. 34, 645 (in German), (2003) .

H. Maruo, I. Miyamoto, and Y. Arata, “CO2 laser welding of ceramics,” 1st International Laser Processing Conference (Laser Institute of America, 1981).

F. Grünwald, Fertigungsverfahren in der Gerätetechnik (Manufacture processes in device engineering) (Carl Hanser Verlag, 1985) (in German).

H. Scholze, Glass. Nature, Structure and Properties (Springer-Verlag, 1994).

Heraeus Group, Heraeus Quarzglas. (Online citation on July 1st 2014). http://heraeus-quarzglas.de/en/quarzglas/mechanicalproperties/Mechanical_properties.aspx

US Patent US20100084384

Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology (John Wiley & Sons, 1999).

Y. Ozeki, H. Yamamoto, H. Yamaguchi, and K. Itoh, “Hermetic sealing of ceramic packages with glass by ultrafast laser welding technique,“ In: Proc. LAMP 2009, Paper MoOL 1-7, 09-115, Kobe, Japan, (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Cross section of a typical molten zone in D263 with the corresponding calculated temperature distribution [15].
Fig. 2
Fig. 2 Schematic diagram of temperature dependent viscosity of glass (compare [16]).
Fig. 3
Fig. 3 Schematic diagram showing the expected surface alteration of a closely positioned molten area in case of volume increase or decrease.
Fig. 4
Fig. 4 Schematics of the setup used for glass irradiation experiments.
Fig. 5
Fig. 5 Photograph of sample prepared for joining experiments. The extents of the optical contact area are marked by arrows. The interference fringes are visible on both sides of the optical contact as multicolored stripes.
Fig. 6
Fig. 6 Schematics of the crack opening test.
Fig. 7
Fig. 7 Confocal microscope height measurements of selected samples of different glass types. Please notice the different scaling ranges.
Fig. 8
Fig. 8 Measured average bulging height depending on the focal displacement below the glass surface for different feed speeds and glass types. The superscript cases 1) and 2) (Soda Lime and BF33) depict two different experiments conducted under otherwise same conditions.
Fig. 9
Fig. 9 Glass samples prepared with optical contact and marked optical contact boundary processed by USP laser for gap bridging.
Fig. 10
Fig. 10 Measurements of bonding energy for the described gap bridging process.
Fig. 11
Fig. 11 Cross sections of peeled off joining seams with focal spot within the upper glass plate (a) and lower glass plate (b).

Tables (1)

Tables Icon

Table 1 Processing Parameters Used for Samples Shown in Fig. 7

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ= 3 t Knife 2 d Glass 3 E 32 l 4

Metrics