Abstract

We report on the successful measurement of surface-enhanced infrared vibrational spectra from a few nanometer thick organic semiconductor layers on samples with resonant plasmonic nanoantennas arranged in arrays. For the first time, a setup with a tunable quantum cascade laser as the light source in mid-infrared range is used. The combination of the quantum cascade laser with a microbolometer array for infrared light allows to map an area 2.8 × 3.1 mm2 with a spatial resolution of about 9 μm, a bandwidth from 1170 to 1300 cm−1, and a spectral resolution of 2.5 cm−1 within only five minutes versus 16 hours using a conventional FTIR micro-spectrometer. We present a quantitative comparison of the experimental results from the setup with the quantum cascade laser with those from the FTIR micro-spectrometer.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fully reflective external-cavity setup for quantum-cascade lasers as a local oscillator in mid-infrared wavelength heterodyne spectroscopy

Dušan Stupar, Jürgen Krieg, Peter Krötz, Guido Sonnabend, Manuela Sornig, Thomas F. Giesen, and Rudolf Schieder
Appl. Opt. 47(16) 2993-2997 (2008)

Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser

Ian M. Craig, Matthew S. Taubman, A. Scott Lea, Mark C. Phillips, Erik E. Josberger, and Markus B. Raschke
Opt. Express 21(25) 30401-30414 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
    [Crossref] [PubMed]
  2. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
    [Crossref] [PubMed]
  3. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).
  4. F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
    [Crossref] [PubMed]
  5. H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
    [Crossref]
  6. F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600809 (2013).
    [Crossref]
  7. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
    [Crossref] [PubMed]
  8. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  9. H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
    [Crossref] [PubMed]
  10. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
    [Crossref] [PubMed]
  11. C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
    [Crossref] [PubMed]
  12. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  13. J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
    [Crossref] [PubMed]
  14. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  15. B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
    [Crossref] [PubMed]
  16. M. J. Weida and B. Yee, “Quantum cascade laser based replacement for FTIR microscopy”, Proc. SPIE 7902, 79021C (2011).
  17. N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
    [Crossref]
  18. T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger, and A. Pucci, “Infrared study of the MoO3 doping efficiency in 4,40-bis(N-carbazolyl)-1,10-biphenyl (CBP),” Org. Electron. 14(2), 575–583 (2013).
    [Crossref]
  19. N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
    [Crossref] [PubMed]

2014 (4)

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

2013 (5)

T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger, and A. Pucci, “Infrared study of the MoO3 doping efficiency in 4,40-bis(N-carbazolyl)-1,10-biphenyl (CBP),” Org. Electron. 14(2), 575–583 (2013).
[Crossref]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600809 (2013).
[Crossref]

2012 (1)

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

2011 (2)

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

M. J. Weida and B. Yee, “Quantum cascade laser based replacement for FTIR microscopy”, Proc. SPIE 7902, 79021C (2011).

2010 (2)

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).

2009 (2)

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

2008 (1)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Adato, R.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Allegrini, M.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Altug, H.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).

Aouani, H.

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Bardhan, R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Beck, S.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger, and A. Pucci, “Infrared study of the MoO3 doping efficiency in 4,40-bis(N-carbazolyl)-1,10-biphenyl (CBP),” Org. Electron. 14(2), 575–583 (2013).
[Crossref]

Beruete, M.

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Bochterle, J.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Bonaccorso, F.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Braun, P. V.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

Buatier de Mongeot, F.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Calogero, G.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Cataldo, S.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

Chiappe, D.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Cole, J. R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Cronin, S. B.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

D’Andrea, C.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Di Fabrizio, E.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Donhauser, D.

T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger, and A. Pucci, “Infrared study of the MoO3 doping efficiency in 4,40-bis(N-carbazolyl)-1,10-biphenyl (CBP),” Org. Electron. 14(2), 575–583 (2013).
[Crossref]

Echternach, P. M.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Egl, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Engel, M.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Fazio, B.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Frank, B.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Gerbert, D.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Giessen, H.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

Glaser, T.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger, and A. Pucci, “Infrared study of the MoO3 doping efficiency in 4,40-bis(N-carbazolyl)-1,10-biphenyl (CBP),” Org. Electron. 14(2), 575–583 (2013).
[Crossref]

Grady, N. K.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Gretz, N.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Gucciardi, P. G.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Haase, K.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Halas, N. J.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Härtling, T.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Hegnerová, K.

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Hentschel, M.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

Herpich, I.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

Homola, J.

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Hong, M.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).

Huck, C.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Irrera, A.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Joshi, A.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Katzmann, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Köhn, A.

T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger, and A. Pucci, “Infrared study of the MoO3 doping efficiency in 4,40-bis(N-carbazolyl)-1,10-biphenyl (CBP),” Org. Electron. 14(2), 575–583 (2013).
[Crossref]

Kränzlin, B.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Kröger, M.

T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger, and A. Pucci, “Infrared study of the MoO3 doping efficiency in 4,40-bis(N-carbazolyl)-1,10-biphenyl (CBP),” Org. Electron. 14(2), 575–583 (2013).
[Crossref]

Kröger, N.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

Lamy de La Chapelle, M.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Lunkenheimer, B.

T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger, and A. Pucci, “Infrared study of the MoO3 doping efficiency in 4,40-bis(N-carbazolyl)-1,10-biphenyl (CBP),” Org. Electron. 14(2), 575–583 (2013).
[Crossref]

Maier, S. A.

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Maragò, O. M.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Martella, C.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Messina, E.

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Muller, R. E.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Navarro-Cia, M.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Navarro-Cía, M.

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Neubrech, F.

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600809 (2013).
[Crossref]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Neudecker, S.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).

Pavaskar, P.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Petrich, W.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

Pucci, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600809 (2013).
[Crossref]

T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger, and A. Pucci, “Infrared study of the MoO3 doping efficiency in 4,40-bis(N-carbazolyl)-1,10-biphenyl (CBP),” Org. Electron. 14(2), 575–583 (2013).
[Crossref]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

Rahmani, M.

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Schönhals, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

Šípova, H.

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Šípová, H.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

Theiss, J.

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Toma, A.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Torres, V.

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Vasi, C.

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

Vogt, J.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Weida, M. J.

M. J. Weida and B. Yee, “Quantum cascade laser based replacement for FTIR microscopy”, Proc. SPIE 7902, 79021C (2011).

Yanik, A. A.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).

Yee, B.

M. J. Weida and B. Yee, “Quantum cascade laser based replacement for FTIR microscopy”, Proc. SPIE 7902, 79021C (2011).

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Zhang, C.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

Zhao, J.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

ACS Nano (7)

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8(5), 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, S. Beck, T. Glaser, M. Hentschel, H. Giessen, and A. Pucci, “Spatial extent of plasmonic enhancement of vibrational signals in the infrared,” ACS Nano 8(6), 6250–6258 (2014).
[Crossref] [PubMed]

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013).
[Crossref] [PubMed]

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012).
[Crossref] [PubMed]

C. D’Andrea, J. Bochterle, A. Toma, C. Huck, F. Neubrech, E. Messina, B. Fazio, O. M. Maragò, E. Di Fabrizio, M. Lamy de La Chapelle, P. G. Gucciardi, and A. Pucci, “Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy,” ACS Nano 7(4), 3522–3531 (2013).
[Crossref] [PubMed]

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P. G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires,” ACS Nano 5(7), 5945–5956 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Top. Quantum Electron. 19(3), 4600809 (2013).
[Crossref]

J. Biomed. Opt. (1)

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

H. Aouani, M. Rahmani, H. Šípova, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, and S. A. Maier, “Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies,” J. Phys. Chem. C 117(36), 18620–18626 (2013).
[Crossref]

Nano Lett. (1)

J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett. 10(8), 2749–2754 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Org. Electron. (1)

T. Glaser, S. Beck, B. Lunkenheimer, D. Donhauser, A. Köhn, M. Kröger, and A. Pucci, “Infrared study of the MoO3 doping efficiency in 4,40-bis(N-carbazolyl)-1,10-biphenyl (CBP),” Org. Electron. 14(2), 575–583 (2013).
[Crossref]

Phys. Rev. Lett. (2)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Proc. SPIE (3)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Radiative engineering of nanoantenna arrays for ultra-sensitive vibrational spectroscopy of proteins,” Proc. SPIE 7757, 77571W (2010).

M. J. Weida and B. Yee, “Quantum cascade laser based replacement for FTIR microscopy”, Proc. SPIE 7902, 79021C (2011).

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, S. Neudecker, A. Pucci, A. Schönhals, and W. Petrich, “Rapid hyperspectral imaging in the mid-infrared,” Proc. SPIE 8939, 89390Z (2014), doi:.
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 SEM image of a typical SEIRA active nanoantenna array. The array consists of nanoantennas, with length L = 2.8 μm, gaps of 50 nm in longitudinal direction and of 2 μm in transverse direction, respectively. The vertical scale bar is 1 µm long.
Fig. 2
Fig. 2 Measured transmittance spectrum of 68 nm CBP on silicon. The band in the range of the QCL setup is marked in red.
Fig. 3
Fig. 3 Schematic of the QCL microscope setup. A QCL (1170-1300 cm−1) is combined by a non-polarizing beam splitter (NPBS). The magnification is determined by the lens (f = 12.5 mm for 4:1) in front of the IR camera (microbolometer FPA). The sample illumination can be matched to the desired field of view by adjustable beam shaping optics. Laser power and wavelength can be monitored parallel to micro-spectroscopy by measuring the transmittance through a thermally stabilized gas cell filled with ethanol and/or water vapor [17].
Fig. 4
Fig. 4 Transmittance maps at 1230 cm−1 obtained with the QCL-microscope of samples with antenna arrays and 1 nm CBP, (a) and (b), and 5 nm, (c) and (d), respectively. The different colors correspond to the intensity in relative transmittance of the nanoantenna arrays in the different areas of the samples. The size of the images for (a) and (c) is about 1.4 mm2. The spatial resolution is about 9 μm. The differences of the arrays within each transmittance map can be clearly recognized. The images (b) and (d) show zooms into the transmittance maps (a) and (d). The detailed structure of the arrays can be recognized and thus also the quality of the fabricated arrays. The measurement with the QCL microscope setup took ca. 5 minutes. The field F1 and F2 (see also Fig. 5) are marked.
Fig. 5
Fig. 5 Cluster maps of obtained hyperspectral measurements with the QCL-microscope (a), (b) and (d), (e) and IR spectra of the individual clusters in (c) and (f) of samples with antenna arrays and 1 nm CBP ((a)-(c)) and 5 nm ((d)-(f)), respectively. The spectral resolution is 2.5 cm−1 and the gained spectral data covers the range from 1170 to 1300 cm−1. (b) and (e) show zooms into the cluster maps of (a) and (d). Two arrays are marked as field 1 (F1) and field 2 (F2), their further enlargements are shown in Fig. 5 and Fig. 6(a). The different colors in the cluster maps correspond to different clusters. Their mean spectra are shown in (c) (including a zoom to the CBP signal) and (f). The mean spectrum of a cluster is determined by averaging over the individual spectra of the pixels.
Fig. 6
Fig. 6 Comparison between the images of the example of array F1 from Fig. 5(a) using (a) the FTIR and (b) QCL microscope. The analyzed spectrum covers the range from 1170 to1300 cm−1 in both images. (a) The FTIR measurement's color map: The different colors correspond to the intensity in relative transmittance of the nanoantennas in the different areas of the field. Their value is explained with the color bar. (b) Enlargement from Fig. 5(a) into the same field. Both maps (a) and (b) show the same distinct feature in their middle, which can be identified as an area with a lower transmittance.
Fig. 7
Fig. 7 Comparison between spectra from array F2 (a) taken with the QCL and the FTIR set up. (b) shows the spectra as they are used for the color code of the cluster maps in (a). The measurement with the FTIR is done in the middle of the 100 × 100 μm array with a 50.4 μm aperture. The area has been marked with a dotted black line in (a). The spectral bandwidth covers the range from 800 to 8000 cm-1 (FTIR) and from 1170 to 1300 cm−1 (QCL), respectively. (c) Relative transmittance of the array measured with both the FTIR and QCL-setup. Only the marked area of (a) is used for comparison. (d) Zoom to the spectral region between 1170 and 1300 cm−1 of (c). Both spectra show the CBP mode at 1230 cm−1 on the antennas resonance background.
Fig. 8
Fig. 8 The relative transmittance spectra (a) and the baseline corrected CBP molecular signals (b) for several arrays with different length L (as given) taken with the FTIR and QCL from the sample with 5 nm CBP on top. The individual measurements in (b) have been vertically shifted against each other. The CBP mode at 1230 cm−1 has clearly the same characteristics in both the FTIR spectrum and QCL spectrum. For the baseline correction, see [1] and its Supporting Information.
Fig. 9
Fig. 9 A schematic of oversampling. The arrows show the movement of the sample. The blue dots are the pixel.

Metrics