Abstract

We present a CMOS chip 256 × 2 single photon avalanche diode (SPAD) line sensor, 23.78 µm pitch, 43.7% fill factor, custom designed for time resolved emission spectroscopy (TRES). Integrating time-to-digital converters (TDCs) implement on-chip mono-exponential fluorescence lifetime pre-calculation allowing timing of 65k photons/pixel at 200 Hz line rate at 40 ps resolution using centre-of-mass method (CMM). Per pixel time-correlated single-photon counting (TCSPC) histograms can also be generated with 320 ps bin resolution. We characterize performance in terms of dark count rate, instrument response function and lifetime uniformity for a set of fluorophores with lifetimes ranging from 4 ns to 6 ns. Lastly, we present fluorescence lifetime spectra of multicolor microspheres and skin autofluorescence acquired using a custom built spectrometer. In TCSPC mode, time-resolved spectra are acquired within 5 minutes whilst in CMM mode spectral lifetime signatures are acquired within 2 ms for fluorophore in cuvette and 200 ms for skin autofluorescence. We demonstrate CMOS line sensors to be a versatile tool for time-resolved fluorescence spectroscopy by providing parallelized and flexible spectral detection of fluorescence decay.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved spectroscopy at 19,000 lines per second using a CMOS SPAD line array enables advanced biophotonics applications

A. Kufcsák, A. Erdogan, R. Walker, K. Ehrlich, M. Tanner, A. Megia-Fernandez, E. Scholefield, P. Emanuel, K. Dhaliwal, M. Bradley, R. K. Henderson, and N. Krstajić
Opt. Express 25(10) 11103-11123 (2017)

New high-speed centre of mass method incorporating background subtraction for accurate determination of fluorescence lifetime

Simon P. Poland, Ahmet T. Erdogan, Nikola Krstajić, James Levitt, Viviane Devauges, Richard J. Walker, David Day-Uei Li, Simon M. Ameer-Beg, and Robert K. Henderson
Opt. Express 24(7) 6899-6915 (2016)

0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays

Nikola Krstajić, Simon Poland, James Levitt, Richard Walker, Ahmet Erdogan, Simon Ameer-Beg, and Robert K. Henderson
Opt. Lett. 40(18) 4305-4308 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edition (Springer, 2010).
  2. J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
    [Crossref] [PubMed]
  3. G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
    [Crossref] [PubMed]
  4. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, (Springer, 2005).
  5. G.-F. Dalla Betta, L. Pancheri, D. Stoppa, R. Henderson, and J. Richardson, “Avalanche Photodiodes in Submicron CMOS Technologies for High-Sensitivity Imaging,” in Advances in Photodiodes, G.-F. Dalla Betta, ed. (InTech, 2011).
  6. E. Charbon, M. Fishburn, R. Walker, R. K. Henderson, and C. Niclass, “SPAD-Based Sensors,” in TOF Range-Imaging Cameras, F. Remondino and D. Stoppa, eds. (Springer Berlin Heidelberg, 2013), pp. 11–38.
  7. E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philosophical Transactions of the Royal Society of London A: Mathematical Physical and Engineering Sciences 372(2012), 20130100 (2014).
    [Crossref]
  8. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
    [Crossref]
  9. S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
    [Crossref]
  10. A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2-3), 299–308 (2009).
    [Crossref]
  11. J. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
    [Crossref]
  12. J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32 x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference, 2009. CICC ’09 (2009), pp. 77 –80.
    [Crossref]
  13. C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International (2011), pp. 312 –314.
  14. S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
    [Crossref] [PubMed]
  15. W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
    [Crossref] [PubMed]
  16. Q. S. Hanley, “Spectrally resolved fluorescent lifetime imaging,” J. R. Soc. Interface 6(Suppl_1), S83–S92 (2009).
    [Crossref]
  17. L. Brand and J. R. Gohlke, “Nanosecond Time-resolved Fluorescence Spectra of a Protein-Dye Complex,” J. Biol. Chem. 246(7), 2317–2319 (1971).
    [PubMed]
  18. J. H. Easter, R. P. DeToma, and L. Brand, “Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-alpha-egg lecithin vesicles,” Biophys. J. 16(6), 571–583 (1976).
    [Crossref] [PubMed]
  19. M. G. Badea, R. P. DeToma, and L. Brand, “Nanosecond relaxation processes in liposomes,” Biophys. J. 24(1), 197–212 (1978).
    [Crossref] [PubMed]
  20. J. R. Lakowicz, E. Gratton, H. Cherek, B. P. Maliwal, and G. Laczko, “Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry,” J. Biol. Chem. 259(17), 10967–10972 (1984).
    [PubMed]
  21. S. Coda, A. J. Thompson, G. T. Kennedy, K. L. Roche, L. Ayaru, D. S. Bansi, G. W. Stamp, A. V. Thillainayagam, P. M. W. French, and C. Dunsby, “Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe,” Biomed. Opt. Express 5(2), 515–538 (2014).
    [Crossref] [PubMed]
  22. Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett. 33(6), 630–632 (2008).
    [Crossref] [PubMed]
  23. D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
    [Crossref] [PubMed]
  24. A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: A new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
    [Crossref] [PubMed]
  25. F. V. Bright and C. A. Munson, “Time-resolved fluorescence spectroscopy for illuminating complex systems,” Anal. Chim. Acta 500(1-2), 71–104 (2003).
    [Crossref]
  26. D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13 um CMOS imaging technology,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 122 –124.
  27. I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
    [Crossref]
  28. J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser Raman spectroscopy,” Opt. Lett. 36(18), 3672–3674 (2011).
    [Crossref] [PubMed]
  29. J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
    [Crossref] [PubMed]
  30. Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
    [Crossref]
  31. Z. Li and M. J. Deen, “Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD,” Opt. Express 22(15), 18736–18747 (2014).
    [Crossref] [PubMed]
  32. S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
    [Crossref] [PubMed]
  33. R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
    [Crossref] [PubMed]
  34. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative Optical Spectroscopy for Tissue Diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996).
    [Crossref] [PubMed]
  35. E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology With 44% Photon Detection Efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
    [Crossref]
  36. E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
    [Crossref]
  37. D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
    [Crossref] [PubMed]
  38. N. Krstajić, S. Poland, D. Tyndall, R. Walker, S. Coelho, D. D. Li, J. Richardson, S. Ameer-Beg, and R. Henderson, “Improving TCSPC data acquisition from CMOS SPAD arrays,” in (2013), Vol. 8797, pp. 879709–879709–8.
  39. D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).
    [Crossref] [PubMed]
  40. M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
    [Crossref] [PubMed]
  41. J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
    [Crossref] [PubMed]
  42. H. M. Shapiro, Practical Flow Cytometry (John Wiley & Sons, 2005).
  43. J. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
    [Crossref]
  44. D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS,” IEEE Trans Biomed Circuits Syst 6(6), 562–570 (2012).
    [Crossref] [PubMed]
  45. N. Krstajić, R. Hogg, and S. J. Matcher, “Common path Fourier domain optical coherence tomography based on multiple reflections within the sample arm,” Opt. Commun. 284(12), 3168–3172 (2011).
    [Crossref]
  46. N. Krstajić, C. T. A. Brown, K. Dholakia, and M. E. Giardini, “Tissue surface as the reference arm in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071305 (2012).
    [Crossref] [PubMed]
  47. Z. Bay, “Calculation of Decay Times from Coincidence Experiments,” Phys. Rev. 77(3), 419 (1950).
    [Crossref]
  48. I. Isenberg and R. D. Dyson, “The Analysis of Fluorescence Decay by a Method of Moments,” Biophys. J. 9(11), 1337–1350 (1969).
    [Crossref] [PubMed]
  49. S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, and L. M. Wilhelmsson, “FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids,” Nucleic Acids Res. 2012, gks856 (2012).
    [PubMed]
  50. S. Preus, “DecayFit - Fluorescence Decay Analysis Software 1.3, FluorTools, www.fluortools.com ,” (2014).
  51. M. G. Badea and L. Brand, “[17] Time-resolved fluorescence measurements,” in Methods in Enzymology, S. N. T. C.H.W. Hirs, ed., Enzyme Structure Part H (Academic Press, 1979), Vol. Volume 61, pp. 378–425.
  52. European Machine Vision Association, “EMVA Standard 1288 - Standard for Characterization of Image Sensors and Cameras Release 3.0,” (2010).
  53. L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84(3), 379–383 (2006).
    [Crossref]
  54. J. Blackwell, K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13(1), 014004 (2008).
    [Crossref] [PubMed]
  55. K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
    [Crossref] [PubMed]
  56. L. Marcu, “Fluorescence Lifetime Techniques in Medical Applications,” Ann. Biomed. Eng. 40(2), 304–331 (2012).
    [Crossref] [PubMed]
  57. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos Trans A Math Phys Eng Sci 367(1900), 3055–3072 (2009).
    [PubMed]

2014 (6)

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philosophical Transactions of the Royal Society of London A: Mathematical Physical and Engineering Sciences 372(2012), 20130100 (2014).
[Crossref]

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref] [PubMed]

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
[Crossref]

S. Coda, A. J. Thompson, G. T. Kennedy, K. L. Roche, L. Ayaru, D. S. Bansi, G. W. Stamp, A. V. Thillainayagam, P. M. W. French, and C. Dunsby, “Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe,” Biomed. Opt. Express 5(2), 515–538 (2014).
[Crossref] [PubMed]

Z. Li and M. J. Deen, “Towards a portable Raman spectrometer using a concave grating and a time-gated CMOS SPAD,” Opt. Express 22(15), 18736–18747 (2014).
[Crossref] [PubMed]

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

2013 (4)

J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
[Crossref] [PubMed]

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

2012 (7)

D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS,” IEEE Trans Biomed Circuits Syst 6(6), 562–570 (2012).
[Crossref] [PubMed]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology With 44% Photon Detection Efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

N. Krstajić, C. T. A. Brown, K. Dholakia, and M. E. Giardini, “Tissue surface as the reference arm in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071305 (2012).
[Crossref] [PubMed]

S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
[Crossref] [PubMed]

S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, and L. M. Wilhelmsson, “FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids,” Nucleic Acids Res. 2012, gks856 (2012).
[PubMed]

L. Marcu, “Fluorescence Lifetime Techniques in Medical Applications,” Ann. Biomed. Eng. 40(2), 304–331 (2012).
[Crossref] [PubMed]

2011 (5)

J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser Raman spectroscopy,” Opt. Lett. 36(18), 3672–3674 (2011).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref] [PubMed]

N. Krstajić, R. Hogg, and S. J. Matcher, “Common path Fourier domain optical coherence tomography based on multiple reflections within the sample arm,” Opt. Commun. 284(12), 3168–3172 (2011).
[Crossref]

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

J. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

2010 (1)

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).
[Crossref] [PubMed]

2009 (5)

J. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Q. S. Hanley, “Spectrally resolved fluorescent lifetime imaging,” J. R. Soc. Interface 6(Suppl_1), S83–S92 (2009).
[Crossref]

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2-3), 299–308 (2009).
[Crossref]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos Trans A Math Phys Eng Sci 367(1900), 3055–3072 (2009).
[PubMed]

2008 (2)

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett. 33(6), 630–632 (2008).
[Crossref] [PubMed]

J. Blackwell, K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13(1), 014004 (2008).
[Crossref] [PubMed]

2007 (2)

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: A new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[Crossref] [PubMed]

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[Crossref] [PubMed]

2006 (1)

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84(3), 379–383 (2006).
[Crossref]

2004 (1)

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

2003 (1)

F. V. Bright and C. A. Munson, “Time-resolved fluorescence spectroscopy for illuminating complex systems,” Anal. Chim. Acta 500(1-2), 71–104 (2003).
[Crossref]

2001 (1)

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

1996 (1)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative Optical Spectroscopy for Tissue Diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996).
[Crossref] [PubMed]

1984 (1)

J. R. Lakowicz, E. Gratton, H. Cherek, B. P. Maliwal, and G. Laczko, “Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry,” J. Biol. Chem. 259(17), 10967–10972 (1984).
[PubMed]

1981 (1)

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

1978 (1)

M. G. Badea, R. P. DeToma, and L. Brand, “Nanosecond relaxation processes in liposomes,” Biophys. J. 24(1), 197–212 (1978).
[Crossref] [PubMed]

1976 (1)

J. H. Easter, R. P. DeToma, and L. Brand, “Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-alpha-egg lecithin vesicles,” Biophys. J. 16(6), 571–583 (1976).
[Crossref] [PubMed]

1971 (1)

L. Brand and J. R. Gohlke, “Nanosecond Time-resolved Fluorescence Spectra of a Protein-Dye Complex,” J. Biol. Chem. 246(7), 2317–2319 (1971).
[PubMed]

1969 (1)

I. Isenberg and R. D. Dyson, “The Analysis of Fluorescence Decay by a Method of Moments,” Biophys. J. 9(11), 1337–1350 (1969).
[Crossref] [PubMed]

1950 (1)

Z. Bay, “Calculation of Decay Times from Coincidence Experiments,” Phys. Rev. 77(3), 419 (1950).
[Crossref]

Ahlrichs, A.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Aikio, M.

I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
[Crossref]

Albinsson, B.

S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, and L. M. Wilhelmsson, “FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids,” Nucleic Acids Res. 2012, gks856 (2012).
[PubMed]

Ameer-Beg, S. M.

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

Andreoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Andresen, V.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Andrews, R.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).
[Crossref] [PubMed]

Arlt, J.

D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS,” IEEE Trans Biomed Circuits Syst 6(6), 562–570 (2012).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref] [PubMed]

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).
[Crossref] [PubMed]

Ayaru, L.

Badea, M. G.

M. G. Badea, R. P. DeToma, and L. Brand, “Nanosecond relaxation processes in liposomes,” Biophys. J. 24(1), 197–212 (1978).
[Crossref] [PubMed]

Bansi, D. S.

Barber, P. R.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Bay, Z.

Z. Bay, “Calculation of Decay Times from Coincidence Experiments,” Phys. Rev. 77(3), 419 (1950).
[Crossref]

Bec, J.

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref] [PubMed]

Becker, W.

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: A new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[Crossref] [PubMed]

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[Crossref] [PubMed]

Behne, M. J.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Benson, O.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Bergmann, A.

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[Crossref] [PubMed]

Biskup, C.

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[Crossref] [PubMed]

Blacksberg, J.

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
[Crossref]

J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser Raman spectroscopy,” Opt. Lett. 36(18), 3672–3674 (2011).
[Crossref] [PubMed]

Blackwell, J.

J. Blackwell, K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13(1), 014004 (2008).
[Crossref] [PubMed]

Blomberg von der Geest, K.

S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
[Crossref] [PubMed]

Borejdo, J.

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

Borghetti, F.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32 x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference, 2009. CICC ’09 (2009), pp. 77 –80.
[Crossref]

Börnchen, C.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Brand, L.

M. G. Badea, R. P. DeToma, and L. Brand, “Nanosecond relaxation processes in liposomes,” Biophys. J. 24(1), 197–212 (1978).
[Crossref] [PubMed]

J. H. Easter, R. P. DeToma, and L. Brand, “Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-alpha-egg lecithin vesicles,” Biophys. J. 16(6), 571–583 (1976).
[Crossref] [PubMed]

L. Brand and J. R. Gohlke, “Nanosecond Time-resolved Fluorescence Spectra of a Protein-Dye Complex,” J. Biol. Chem. 246(7), 2317–2319 (1971).
[PubMed]

Bright, F. V.

F. V. Bright and C. A. Munson, “Time-resolved fluorescence spectroscopy for illuminating complex systems,” Anal. Chim. Acta 500(1-2), 71–104 (2003).
[Crossref]

Brock, A.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Brown, C. T. A.

N. Krstajić, C. T. A. Brown, K. Dholakia, and M. E. Giardini, “Tissue surface as the reference arm in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071305 (2012).
[Crossref] [PubMed]

Charbon, E.

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
[Crossref]

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philosophical Transactions of the Royal Society of London A: Mathematical Physical and Engineering Sciences 372(2012), 20130100 (2014).
[Crossref]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref] [PubMed]

J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser Raman spectroscopy,” Opt. Lett. 36(18), 3672–3674 (2011).
[Crossref] [PubMed]

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32 x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference, 2009. CICC ’09 (2009), pp. 77 –80.
[Crossref]

Cherek, H.

J. R. Lakowicz, E. Gratton, H. Cherek, B. P. Maliwal, and G. Laczko, “Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry,” J. Biol. Chem. 259(17), 10967–10972 (1984).
[PubMed]

Coda, S.

Coelho, S.

Cole, M. J.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Coolen, A. C. C.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Cova, S.

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2-3), 299–308 (2009).
[Crossref]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Deen, M. J.

Dehghani, H.

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos Trans A Math Phys Eng Sci 367(1900), 3055–3072 (2009).
[PubMed]

DeToma, R. P.

M. G. Badea, R. P. DeToma, and L. Brand, “Nanosecond relaxation processes in liposomes,” Biophys. J. 24(1), 197–212 (1978).
[Crossref] [PubMed]

J. H. Easter, R. P. DeToma, and L. Brand, “Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-alpha-egg lecithin vesicles,” Biophys. J. 16(6), 571–583 (1976).
[Crossref] [PubMed]

Devauges, V.

Dholakia, K.

N. Krstajić, C. T. A. Brown, K. Dholakia, and M. E. Giardini, “Tissue surface as the reference arm in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071305 (2012).
[Crossref] [PubMed]

Dipple, K. M.

J. Blackwell, K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13(1), 014004 (2008).
[Crossref] [PubMed]

Dowling, K.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Dunsby, C.

Dyson, R. D.

I. Isenberg and R. D. Dyson, “The Analysis of Fluorescence Decay by a Method of Moments,” Biophys. J. 9(11), 1337–1350 (1969).
[Crossref] [PubMed]

Easter, J. H.

J. H. Easter, R. P. DeToma, and L. Brand, “Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-alpha-egg lecithin vesicles,” Biophys. J. 16(6), 571–583 (1976).
[Crossref] [PubMed]

Elson, D. S.

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref] [PubMed]

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett. 33(6), 630–632 (2008).
[Crossref] [PubMed]

Erdmann, R.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Esposito, A.

S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
[Crossref] [PubMed]

Fernandes, L. P.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Foldes-Papp, Z.

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

Frank, J. H.

S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
[Crossref] [PubMed]

Fraternali, F.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

French, P. M. W.

S. Coda, A. J. Thompson, G. T. Kennedy, K. L. Roche, L. Ayaru, D. S. Bansi, G. W. Stamp, A. V. Thillainayagam, P. M. W. French, and C. Dunsby, “Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe,” Biomed. Opt. Express 5(2), 515–538 (2014).
[Crossref] [PubMed]

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Fruhwirth, G. O.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Fu, Z.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84(3), 379–383 (2006).
[Crossref]

Fudala, R.

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

Gersbach, M.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32 x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference, 2009. CICC ’09 (2009), pp. 77 –80.
[Crossref]

Ghioni, M.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

Giardini, M. E.

N. Krstajić, C. T. A. Brown, K. Dholakia, and M. E. Giardini, “Tissue surface as the reference arm in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071305 (2012).
[Crossref] [PubMed]

Gibson, A.

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos Trans A Math Phys Eng Sci 367(1900), 3055–3072 (2009).
[PubMed]

Gohlke, J. R.

L. Brand and J. R. Gohlke, “Nanosecond Time-resolved Fluorescence Spectra of a Protein-Dye Complex,” J. Biol. Chem. 246(7), 2317–2319 (1971).
[PubMed]

Grant, L.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32 x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference, 2009. CICC ’09 (2009), pp. 77 –80.
[Crossref]

Grant, L. A.

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology With 44% Photon Detection Efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

J. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

J. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Gratton, E.

J. R. Lakowicz, E. Gratton, H. Cherek, B. P. Maliwal, and G. Laczko, “Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry,” J. Biol. Chem. 259(17), 10967–10972 (1984).
[PubMed]

Gryczynski, I.

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

Gryczynski, Z.

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

Guo, B.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84(3), 379–383 (2006).
[Crossref]

Hallman, L.

I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
[Crossref]

Hanley, Q. S.

Q. S. Hanley, “Spectrally resolved fluorescent lifetime imaging,” J. R. Soc. Interface 6(Suppl_1), S83–S92 (2009).
[Crossref]

Hauser, A. E.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Henderson, R.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).
[Crossref] [PubMed]

Henderson, R. K.

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS,” IEEE Trans Biomed Circuits Syst 6(6), 562–570 (2012).
[Crossref] [PubMed]

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology With 44% Photon Detection Efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref] [PubMed]

J. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

J. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32 x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference, 2009. CICC ’09 (2009), pp. 77 –80.
[Crossref]

Herz, J.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Hogg, R.

N. Krstajić, R. Hogg, and S. J. Matcher, “Common path Fourier domain optical coherence tomography based on multiple reflections within the sample arm,” Opt. Commun. 284(12), 3168–3172 (2011).
[Crossref]

Hollars, C. W.

Hülshoff, Ch.

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: A new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[Crossref] [PubMed]

Isenberg, I.

I. Isenberg and R. D. Dyson, “The Analysis of Fluorescence Decay by a Method of Moments,” Biophys. J. 9(11), 1337–1350 (1969).
[Crossref] [PubMed]

Jo, J. A.

Johnston, A.

D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS,” IEEE Trans Biomed Circuits Syst 6(6), 562–570 (2012).
[Crossref] [PubMed]

Jones, R.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Kaminski, C. F.

S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
[Crossref] [PubMed]

Katika, K. M.

J. Blackwell, K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13(1), 014004 (2008).
[Crossref] [PubMed]

Kell, G.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Kelleher, M.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Kennedy, G. T.

Keränen, P.

Kéri, G.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Kernbach, M.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Kilpela, A.

I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
[Crossref]

Kilså, K.

S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, and L. M. Wilhelmsson, “FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids,” Nucleic Acids Res. 2012, gks856 (2012).
[PubMed]

Kinzler, I.

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: A new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[Crossref] [PubMed]

Kiwanuka, S.-S.

S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
[Crossref] [PubMed]

Kogler, M.

I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
[Crossref]

Kögler, M.

Kostamovaara, J.

J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
[Crossref] [PubMed]

I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
[Crossref]

Krstajic, N.

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

N. Krstajić, C. T. A. Brown, K. Dholakia, and M. E. Giardini, “Tissue surface as the reference arm in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071305 (2012).
[Crossref] [PubMed]

N. Krstajić, R. Hogg, and S. J. Matcher, “Common path Fourier domain optical coherence tomography based on multiple reflections within the sample arm,” Opt. Commun. 284(12), 3168–3172 (2011).
[Crossref]

Laczko, G.

J. R. Lakowicz, E. Gratton, H. Cherek, B. P. Maliwal, and G. Laczko, “Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry,” J. Biol. Chem. 259(17), 10967–10972 (1984).
[PubMed]

Lakowicz, J. R.

J. R. Lakowicz, E. Gratton, H. Cherek, B. P. Maliwal, and G. Laczko, “Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry,” J. Biol. Chem. 259(17), 10967–10972 (1984).
[PubMed]

Lansman, A.-K.

I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
[Crossref]

Laurila, T. K.

S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
[Crossref] [PubMed]

Laursen, B. W.

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

Lawler, K.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Lee, K. C. B.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Lévêque-Fort, S.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Lever, M. J.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Levin, S. R.

J. Blackwell, K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13(1), 014004 (2008).
[Crossref] [PubMed]

Levitt, J. A.

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

Li, D. D.-U.

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS,” IEEE Trans Biomed Circuits Syst 6(6), 562–570 (2012).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref] [PubMed]

Li, D.-U.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).
[Crossref] [PubMed]

Li, Z.

Lin, Z.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84(3), 379–383 (2006).
[Crossref]

Liu, J.

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref] [PubMed]

Liu, L.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84(3), 379–383 (2006).
[Crossref]

Liu, R.

Longoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Lotito, A.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

Ma, D.

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref] [PubMed]

Maliwal, B. P.

J. R. Lakowicz, E. Gratton, H. Cherek, B. P. Maliwal, and G. Laczko, “Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry,” J. Biol. Chem. 259(17), 10967–10972 (1984).
[PubMed]

Marcu, L.

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref] [PubMed]

L. Marcu, “Fluorescence Lifetime Techniques in Medical Applications,” Ann. Biomed. Eng. 40(2), 304–331 (2012).
[Crossref] [PubMed]

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett. 33(6), 630–632 (2008).
[Crossref] [PubMed]

Maruyama, Y.

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
[Crossref]

J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser Raman spectroscopy,” Opt. Lett. 36(18), 3672–3674 (2011).
[Crossref] [PubMed]

Matcher, S. J.

N. Krstajić, R. Hogg, and S. J. Matcher, “Common path Fourier domain optical coherence tomography based on multiple reflections within the sample arm,” Opt. Commun. 284(12), 3168–3172 (2011).
[Crossref]

Matthews, D. R.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

Miannay, F.-A.

S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, and L. M. Wilhelmsson, “FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids,” Nucleic Acids Res. 2012, gks856 (2012).
[PubMed]

Moll, I.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Mora, A. D.

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2-3), 299–308 (2009).
[Crossref]

Morton, P. E.

Mossakowski, A.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Mummert, M.

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

Munson, C. A.

F. V. Bright and C. A. Munson, “Time-resolved fluorescence spectroscopy for illuminating complex systems,” Anal. Chim. Acta 500(1-2), 71–104 (2003).
[Crossref]

Ng, T.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Nicholas, N. S.

Niesner, R.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Nissinen, I.

J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
[Crossref] [PubMed]

I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
[Crossref]

Nissinen, J.

J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
[Crossref] [PubMed]

I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
[Crossref]

Niu, H.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84(3), 379–383 (2006).
[Crossref]

Nouvong, A.

J. Blackwell, K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13(1), 014004 (2008).
[Crossref] [PubMed]

Pancheri, L.

S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
[Crossref] [PubMed]

Park, J.

Parsons, M.

Patel, G.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Pilon, L.

J. Blackwell, K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13(1), 014004 (2008).
[Crossref] [PubMed]

Poland, S. P.

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Preus, S.

S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, and L. M. Wilhelmsson, “FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids,” Nucleic Acids Res. 2012, gks856 (2012).
[PubMed]

Qu, J.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84(3), 379–383 (2006).
[Crossref]

Radbruch, H.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Rae, B.

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).
[Crossref] [PubMed]

Rae, B. R.

D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS,” IEEE Trans Biomed Circuits Syst 6(6), 562–570 (2012).
[Crossref] [PubMed]

Rahn, H.-J.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Rech, I.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

Renshaw, D.

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology With 44% Photon Detection Efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Rich, R. M.

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

Richards-Kortum, R.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative Optical Spectroscopy for Tissue Diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996).
[Crossref] [PubMed]

Richardson, J.

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref] [PubMed]

J. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

J. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32 x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference, 2009. CICC ’09 (2009), pp. 77 –80.
[Crossref]

Richardson, J. A.

D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS,” IEEE Trans Biomed Circuits Syst 6(6), 562–570 (2012).
[Crossref] [PubMed]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology With 44% Photon Detection Efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

Rinnenthal, J. L.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Roche, K. L.

Röhlicke, T.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Rossman, G. R.

Rück, A.

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: A new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[Crossref] [PubMed]

Schell, A. W.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Seelemann, T.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Sevick-Muraca, E.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative Optical Spectroscopy for Tissue Diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996).
[Crossref] [PubMed]

Siegel, J.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Siffrin, V.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Sørensen, T. J.

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

Spiecker, H.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Stamp, G. W.

Steiner, R.

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: A new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[Crossref] [PubMed]

Stoppa, D.

S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref] [PubMed]

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32 x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference, 2009. CICC ’09 (2009), pp. 77 –80.
[Crossref]

Suhling, K.

Sun, Y.

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref] [PubMed]

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref] [PubMed]

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett. 33(6), 630–632 (2008).
[Crossref] [PubMed]

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett. 33(6), 630–632 (2008).
[Crossref] [PubMed]

Tenhunen, J.

J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21(25), 31632–31645 (2013).
[Crossref] [PubMed]

I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
[Crossref]

Thillainayagam, A. V.

Thompson, A. J.

Tosi, A.

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2-3), 299–308 (2009).
[Crossref]

Tyndall, D.

S. P. Poland, N. Krstajić, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, P. E. Morton, N. S. Nicholas, J. Richardson, D. D.-U. Li, K. Suhling, C. M. Wells, M. Parsons, R. K. Henderson, and S. M. Ameer-Beg, “Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo,” Opt. Lett. 39(20), 6013–6016 (2014).
[Crossref] [PubMed]

D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS,” IEEE Trans Biomed Circuits Syst 6(6), 562–570 (2012).
[Crossref] [PubMed]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref] [PubMed]

Vojnovic, B.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Wahl, M.

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

Walker, R.

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref] [PubMed]

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32 x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference, 2009. CICC ’09 (2009), pp. 77 –80.
[Crossref]

Walker, R. J.

Wang, L.

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84(3), 379–383 (2006).
[Crossref]

Webb, S. E. D.

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

Webster, E. A. G.

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology With 44% Photon Detection Efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

J. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

Weitsman, G.

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Wells, C. M.

Wilhelmsson, L. M.

S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, and L. M. Wilhelmsson, “FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids,” Nucleic Acids Res. 2012, gks856 (2012).
[PubMed]

Yankelevich, D. R.

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref] [PubMed]

Zappa, F.

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2-3), 299–308 (2009).
[Crossref]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

Zipp, F.

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

R. M. Rich, M. Mummert, Z. Gryczynski, J. Borejdo, T. J. Sørensen, B. W. Laursen, Z. Foldes-Papp, I. Gryczynski, and R. Fudala, “Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC),” Anal. Bioanal. Chem. 405(14), 4887–4894 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

S.-S. Kiwanuka, T. K. Laurila, J. H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, and C. F. Kaminski, “Development of Broadband Cavity Ring-Down Spectroscopy for Biomedical Diagnostics of Liquid Analytes,” Anal. Chem. 84(13), 5489–5493 (2012).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

F. V. Bright and C. A. Munson, “Time-resolved fluorescence spectroscopy for illuminating complex systems,” Anal. Chim. Acta 500(1-2), 71–104 (2003).
[Crossref]

Ann. Biomed. Eng. (1)

L. Marcu, “Fluorescence Lifetime Techniques in Medical Applications,” Ann. Biomed. Eng. 40(2), 304–331 (2012).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative Optical Spectroscopy for Tissue Diagnosis,” Annu. Rev. Phys. Chem. 47(1), 555–606 (1996).
[Crossref] [PubMed]

Appl. Phys. B (1)

L. Liu, J. Qu, Z. Lin, L. Wang, Z. Fu, B. Guo, and H. Niu, “Simultaneous time- and spectrum-resolved multifocal multiphoton microscopy,” Appl. Phys. B 84(3), 379–383 (2006).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (4)

J. H. Easter, R. P. DeToma, and L. Brand, “Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-alpha-egg lecithin vesicles,” Biophys. J. 16(6), 571–583 (1976).
[Crossref] [PubMed]

M. G. Badea, R. P. DeToma, and L. Brand, “Nanosecond relaxation processes in liposomes,” Biophys. J. 24(1), 197–212 (1978).
[Crossref] [PubMed]

I. Isenberg and R. D. Dyson, “The Analysis of Fluorescence Decay by a Method of Moments,” Biophys. J. 9(11), 1337–1350 (1969).
[Crossref] [PubMed]

K. C. B. Lee, J. Siegel, S. E. D. Webb, S. Lévêque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the Stretched Exponential Function to Fluorescence Lifetime Imaging,” Biophys. J. 81(3), 1265–1274 (2001).
[Crossref] [PubMed]

ChemPhysChem (1)

G. O. Fruhwirth, L. P. Fernandes, G. Weitsman, G. Patel, M. Kelleher, K. Lawler, A. Brock, S. P. Poland, D. R. Matthews, G. Kéri, P. R. Barber, B. Vojnovic, S. M. Ameer-Beg, A. C. C. Coolen, F. Fraternali, and T. Ng, “How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology,” ChemPhysChem 12(3), 442–461 (2011).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, “Fluorescence lifetime and polarization-resolved imaging in cell biology,” Curr. Opin. Biotechnol. 20(1), 28–36 (2009).
[Crossref] [PubMed]

IEEE Electron Device Lett. (2)

E. A. G. Webster, J. A. Richardson, L. A. Grant, D. Renshaw, and R. K. Henderson, “A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology With 44% Photon Detection Efficiency at 690 nm,” IEEE Electron Device Lett. 33(5), 694–696 (2012).
[Crossref]

E. A. G. Webster, L. A. Grant, and R. K. Henderson, “A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

IEEE J. Solid-State Circuits (1)

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS,” IEEE J. Solid-State Circuits 49(1), 179–189 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Richardson, L. A. Grant, and R. K. Henderson, “Low Dark Count Single-Photon Avalanche Diode Structure Compatible With Standard Nanometer Scale CMOS Technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

IEEE Trans Biomed Circuits Syst (1)

D. Tyndall, B. R. Rae, D. D.-U. Li, J. Arlt, A. Johnston, J. A. Richardson, and R. K. Henderson, “A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS,” IEEE Trans Biomed Circuits Syst 6(6), 562–570 (2012).
[Crossref] [PubMed]

IEEE Trans. Electron. Dev. (1)

J. Richardson, E. A. G. Webster, L. A. Grant, and R. K. Henderson, “Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology,” IEEE Trans. Electron. Dev. 58(7), 2028–2035 (2011).
[Crossref]

J. Biol. Chem. (2)

L. Brand and J. R. Gohlke, “Nanosecond Time-resolved Fluorescence Spectra of a Protein-Dye Complex,” J. Biol. Chem. 246(7), 2317–2319 (1971).
[PubMed]

J. R. Lakowicz, E. Gratton, H. Cherek, B. P. Maliwal, and G. Laczko, “Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry,” J. Biol. Chem. 259(17), 10967–10972 (1984).
[PubMed]

J. Biomed. Opt. (4)

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref] [PubMed]

N. Krstajić, C. T. A. Brown, K. Dholakia, and M. E. Giardini, “Tissue surface as the reference arm in Fourier domain optical coherence tomography,” J. Biomed. Opt. 17(7), 071305 (2012).
[Crossref] [PubMed]

D.-U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010).
[Crossref] [PubMed]

J. Blackwell, K. M. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13(1), 014004 (2008).
[Crossref] [PubMed]

J. Mod. Opt. (2)

A. Tosi, A. D. Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2-3), 299–308 (2009).
[Crossref]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9-10), 1267–1288 (2004).
[Crossref]

J. R. Soc. Interface (1)

Q. S. Hanley, “Spectrally resolved fluorescent lifetime imaging,” J. R. Soc. Interface 6(Suppl_1), S83–S92 (2009).
[Crossref]

Microsc. Res. Tech. (2)

W. Becker, A. Bergmann, and C. Biskup, “Multispectral fluorescence lifetime imaging by TCSPC,” Microsc. Res. Tech. 70(5), 403–409 (2007).
[Crossref] [PubMed]

A. Rück, Ch. Hülshoff, I. Kinzler, W. Becker, and R. Steiner, “SLIM: A new method for molecular imaging,” Microsc. Res. Tech. 70(5), 485–492 (2007).
[Crossref] [PubMed]

Nucleic Acids Res. (1)

S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, and L. M. Wilhelmsson, “FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids,” Nucleic Acids Res. 2012, gks856 (2012).
[PubMed]

Opt. Commun. (1)

N. Krstajić, R. Hogg, and S. J. Matcher, “Common path Fourier domain optical coherence tomography based on multiple reflections within the sample arm,” Opt. Commun. 284(12), 3168–3172 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Philos Trans A Math Phys Eng Sci (1)

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos Trans A Math Phys Eng Sci 367(1900), 3055–3072 (2009).
[PubMed]

Philosophical Transactions of the Royal Society of London A: Mathematical Physical and Engineering Sciences (1)

E. Charbon, “Single-photon imaging in complementary metal oxide semiconductor processes,” Philosophical Transactions of the Royal Society of London A: Mathematical Physical and Engineering Sciences 372(2012), 20130100 (2014).
[Crossref]

Phys. Rev. (1)

Z. Bay, “Calculation of Decay Times from Coincidence Experiments,” Phys. Rev. 77(3), 419 (1950).
[Crossref]

PLoS ONE (1)

J. L. Rinnenthal, C. Börnchen, H. Radbruch, V. Andresen, A. Mossakowski, V. Siffrin, T. Seelemann, H. Spiecker, I. Moll, J. Herz, A. E. Hauser, F. Zipp, M. J. Behne, and R. Niesner, “Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation,” PLoS ONE 8(4), e60100 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

M. Wahl, T. Röhlicke, H.-J. Rahn, R. Erdmann, G. Kell, A. Ahlrichs, M. Kernbach, A. W. Schell, and O. Benson, “Integrated multichannel photon timing instrument with very short dead time and high throughput,” Rev. Sci. Instrum. 84(4), 043102 (2013).
[Crossref] [PubMed]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

D. R. Yankelevich, D. Ma, J. Liu, Y. Sun, Y. Sun, J. Bec, D. S. Elson, and L. Marcu, “Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging,” Rev. Sci. Instrum. 85(3), 034303 (2014).
[Crossref] [PubMed]

Other (13)

D. Tyndall, B. Rae, D. Li, J. Richardson, J. Arlt, and R. Henderson, “A 100Mphoton/s time-resolved mini-silicon photomultiplier with on-chip fluorescence lifetime estimation in 0.13 um CMOS imaging technology,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 122 –124.

I. Nissinen, J. Nissinen, A.-K. Lansman, L. Hallman, A. Kilpela, J. Kostamovaara, M. Kogler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single photon avalanche diode detector for Raman spectroscopy,” in Solid-State Device Research Conference (ESSDERC) (2011), pp. 375–378.
[Crossref]

N. Krstajić, S. Poland, D. Tyndall, R. Walker, S. Coelho, D. D. Li, J. Richardson, S. Ameer-Beg, and R. Henderson, “Improving TCSPC data acquisition from CMOS SPAD arrays,” in (2013), Vol. 8797, pp. 879709–879709–8.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edition (Springer, 2010).

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, (Springer, 2005).

G.-F. Dalla Betta, L. Pancheri, D. Stoppa, R. Henderson, and J. Richardson, “Avalanche Photodiodes in Submicron CMOS Technologies for High-Sensitivity Imaging,” in Advances in Photodiodes, G.-F. Dalla Betta, ed. (InTech, 2011).

E. Charbon, M. Fishburn, R. Walker, R. K. Henderson, and C. Niclass, “SPAD-Based Sensors,” in TOF Range-Imaging Cameras, F. Remondino and D. Stoppa, eds. (Springer Berlin Heidelberg, 2013), pp. 11–38.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, “A 32 x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging,” in IEEE Custom Integrated Circuits Conference, 2009. CICC ’09 (2009), pp. 77 –80.
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160 x128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International (2011), pp. 312 –314.

H. M. Shapiro, Practical Flow Cytometry (John Wiley & Sons, 2005).

S. Preus, “DecayFit - Fluorescence Decay Analysis Software 1.3, FluorTools, www.fluortools.com ,” (2014).

M. G. Badea and L. Brand, “[17] Time-resolved fluorescence measurements,” in Methods in Enzymology, S. N. T. C.H.W. Hirs, ed., Enzyme Structure Part H (Academic Press, 1979), Vol. Volume 61, pp. 378–425.

European Machine Vision Association, “EMVA Standard 1288 - Standard for Characterization of Image Sensors and Cameras Release 3.0,” (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1 Spectrometer chip micrograph.
Fig. 2
Fig. 2 SPADs and interface circuitry. Multiplexer selects between blue SPAD (bottom, B1 to B4) and red SPAD (top R1 to R4). Red SPAD can be masked while blue SPAD can be time gated.
Fig. 3
Fig. 3 SPAD gating waveforms.
Fig. 4
Fig. 4 Gate timing generator.
Fig. 5
Fig. 5 Integrating time to digital converter.
Fig. 6
Fig. 6 Integrating TDC timing.
Fig. 7
Fig. 7 Line sensor fluorescence test setups comprising cuvette readout for uniformity tests (a) and custom-built spectrometer linked to cuvette via multimode fiber and epifluorescence readout (b).
Fig. 8
Fig. 8 DCR of the red SPAD line array.
Fig. 9
Fig. 9 Time resolution across the 256 pixels of the line sensor.
Fig. 10
Fig. 10 (a) Sample IRF from one pixel, (b) IRF FWHM across chip.
Fig. 11
Fig. 11 (a) Red SPAD line array IRF FWHM at 443 nm and 654 nm, (b) red SPAD line array IRF location variability across chip, (c) blue SPAD line array IRF FWHM at 443 nm and 654 nm, (d) blue SPAD line array IRF location variability across chip (y axis units are in TDC bins).
Fig. 12
Fig. 12 Edge peaks on the right side of each plot have different peak values for the same experiment. Pixels 20, 60, 100 and 150 are plotted from the same experiment where spectral decay was measured.
Fig. 13
Fig. 13 Sample decay, fluorescein.
Fig. 14
Fig. 14 TCSPC mode results for two fluorophores (a) and CMM mode (b).
Fig. 15
Fig. 15 (a) Spectral CMMdiff for 2 ms, 200 ms and 2 s exposure times of colour microspheres. As expected, the increased exposure time reduces the noise. (b) Spectral CMMdiff for 200 ms and 2 s exposure times of skin autofluorescence.
Fig. 16
Fig. 16 (a) CMM for 200 µs and 2 ms exposure times. Mean photon count per pixel was 100 photons for 200 µs exposure time. (b) Standard deviation of CMM value obtained for 50 repeated measurements of IRF with exposure times ranging from 200 µs to 2 ms. 256 curves are plotted to illustrate the spread of CMM variation across all pixels.
Fig. 17
Fig. 17 (a) 3D spectral decay plot for multicolour microspheres, (b) skin autofluorescence. For display purposes every 3rd decay is shown. A moving average of 7 pixels was used to smooth the spectrum display in order to remove the effect of ~10 noisy pixels.
Fig. 18
Fig. 18 (a) Spectral relaxation plots extracted from Fig. 17 (a) for multicolor microspheres. (b) Corresponding fluorescence lifetime increase with increasing wavelength for multicolor microspheres. (c) Spectral relaxation plots extracted from Fig. 17 (b) for skin autofluroescence. (d) Corresponding spectral fluorescence lifetime curve for skin autofluroescence.
Fig. 19
Fig. 19 Skin autofluorescence decay curve at 530 nm. Decay is not a simple singe exponential as can be seen by curved decay on log scale plot.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ CMM = 0 T tf( t )dt 0 T f( t )dt j=0 M1 j N j N c h.

Metrics