Abstract

Recently, we introduced the basic concepts behind a new polarimeter device based on conical refraction (CR), which presents several appealing features compared to standard polarimeters. To name some of them, CR polarimeters retrieve the polarization state of an input light beam with a snapshot measurement, allow for substantially enhancing the data redundancy without increasing the measuring time, and avoid instrumental errors owing to rotating elements or phase-to-voltage calibration typical from dynamic devices. In this article, we present a comprehensive study of the optimization, robustness and parameters tolerance of CR based polarimeters. In addition, a particular CR based polarimetric architecture is experimentally implemented, and some concerns and recommendations are provided. Finally, the implemented polarimeter is experimentally tested by measuring different states of polarization, including fully and partially polarized light.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Conical refraction as a tool for polarization metrology

Alba Peinado, Alex Turpin, Angel Lizana, Estefania Fernández, Jordi Mompart, and Juan Campos
Opt. Lett. 38(20) 4100-4103 (2013)

Complete snapshot Stokes polarimeter based on a single biaxial crystal

Irene Estévez, Victor Sopo, Angel Lizana, Alex Turpin, and Juan Campos
Opt. Lett. 41(19) 4566-4569 (2016)

Optimization and performance criteria of a Stokes polarimeter based on two variable retarders

Alba Peinado, Angel Lizana, Josep Vidal, Claudio Iemmi, and Juan Campos
Opt. Express 18(10) 9815-9830 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland Publishing Company, 1977).
  2. V. A. Escobar, J. R. Rangel, N. V. Pérez, G. Andrade, and J. L. Dávila, Infrared Spectroscopy – Materials Sciencie, Enginneering and Technology (Intech, 2012), Chap. 9.
  3. N. L. Do, E. Garcia-Caurel, N. Bererd, N. Moncoffre, and D. Gorse-Pomonti, “Determination of thicknesses of oxide films grown on titanium under argon irradiation by spectroscopic ellipsometry,” J. Nucl. Mater. 447(1–3), 197–207 (2014).
    [Crossref]
  4. A. Lizana, M. Foldyna, M. Stchakovsky, B. Georges, N. David, and E. Garcia-Caurel, “Enhanced sensitivity to dielectric function and thickness of absorbing thin film by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry,” J. Phys. D Appl. Phys. 46(10), 105501 (2013).
    [Crossref]
  5. K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
    [Crossref] [PubMed]
  6. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
    [Crossref] [PubMed]
  7. N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
    [Crossref]
  8. D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
    [Crossref]
  9. R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 1995).
  10. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  11. A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimization and performance criteria of a Stokes polarimeter based on two variable retarders,” Opt. Express 18(10), 9815–9830 (2010).
    [Crossref] [PubMed]
  12. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
    [Crossref] [PubMed]
  13. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
    [Crossref]
  14. P. Raman, K. Fuller, D. Gregory, M. Newchurch, and J. Christy, “Broadband (UV-VIS-NIR) Mueller matrix polarimeter,” Proc. SPIE 8160, 816013 (2011).
    [Crossref]
  15. S. Savenkova, R. Muttiahb, E. Oberemoka, and A. Klimova, “Incomplete active polarimetry: Measurement of the block-diagonal scattering matrix,” J. of Quant. Spec. and Rad. Trans. 112(11), 1796–1802 (2011).
    [Crossref]
  16. E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” J. Thin Solid Films 455–456, 120–123 (2004).
    [Crossref]
  17. L. Gendre, A. Foulonneau, and L. Bigué, “Imaging linear polarimetry using a single ferroelectric liquid crystal modulator,” Appl. Opt. 49(25), 4687–4699 (2010).
    [Crossref] [PubMed]
  18. A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimized Stokes polarimeters based on a single twisted nematic liquid-crystal device for the minimization of noise propagation,” Appl. Opt. 50(28), 5437–5445 (2011).
    [Crossref] [PubMed]
  19. E. Compain and B. Drevillon, “Broadband division-of-amplitude polarimeter based on uncoated prisms,” Appl. Opt. 37(25), 5938–5944 (1998).
    [Crossref] [PubMed]
  20. A. Peinado, A. Turpin, A. Lizana, E. Fernández, J. Mompart, and J. Campos, “A method for polarization metrology based on the conical refraction,” Opt. Lett. 38(20), 4100–4103 (2013).
    [Crossref] [PubMed]
  21. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
    [Crossref]
  22. M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton's diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
    [Crossref]
  23. A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. 44, 436–439 (1978).
  24. T. K. Kalkandjiev and M. A. Bursukova, “Conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
    [Crossref]
  25. A. Turpin, Y. V. Loiko, T. K. Kalkandjiev, H. Tomizawa, and J. Mompart, “Wave-vector and polarization dependence of conical refraction,” Opt. Express 21(4), 4503–4511 (2013).
    [Crossref] [PubMed]
  26. A. Turpin, Y. V. Loiko, T. K. Kalkandjiev, and J. Mompart, “Multiple rings formation in cascaded conical refraction,” Opt. Lett. 38(9), 1455–1457 (2013).
    [Crossref] [PubMed]
  27. A. Turpin, Y. Loiko, T. K. Kalkandjiev, and J. Mompart, “Free-space optical polarization demultiplexing and multiplexing by means of conical refraction,” Opt. Lett. 37(20), 4197–4199 (2012).
    [Crossref] [PubMed]
  28. Y. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and E. U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 8960, 89601Q (2014).
    [Crossref]
  29. D. P. O’Dwyer, C. F. Phelan, K. E. Ballantine, Y. P. Rakovich, J. G. Lunney, and J. F. Donegan, “Conical diffraction of linearly polarized light controls the angular position of a microscopic object,” Opt. Exp. 18(26), 27319–27326 (2010).
    [Crossref]
  30. P. Taylor, Theory and Applications of Numerical Analysis (Academic, 1996).
  31. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41(4), 619–630 (2002).
    [Crossref] [PubMed]
  32. F. Goudail, “Noise minimization and equalization for Stokes polarimeters in the presence of signal-dependent Poisson shot noise,” Opt. Lett. 34(5), 647–649 (2009).
    [Crossref] [PubMed]
  33. D. Lara and C. Paterson, “Stokes polarimeter optimization in the presence of shot and Gaussian noise,” Opt. Express 17(23), 21240–21249 (2009).
    [Crossref] [PubMed]
  34. G. Anna and F. Goudail, “Optimal Mueller matrix estimation in the presence of Poisson shot noise,” Opt. Express 20(19), 21331–21340 (2012).
    [Crossref] [PubMed]
  35. D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
    [Crossref]
  36. E. Chironi and C. Iemmi, “Bounding the relative errors associated with a complete Stokes polarimeter,” J. Opt. Soc. Am. A 31(1), 75–80 (2014).
    [Crossref] [PubMed]
  37. A. Peinado, A. Lizana, and J. Campos, “Optimization and tolerance analysis of a polarimeter with ferroelectric liquid crystals,” Appl. Opt. 52(23), 5748–5757 (2013).
    [Crossref] [PubMed]
  38. J. C. Kemp and M. S. Barbour, “A photoelastic-modulator polarimeter at Pine Mountain Observatory,” Publ. Astron. Soc. Pac. 93, 521–525 (1981).
    [Crossref]
  39. O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51(28), 6805–6817 (2012).
    [Crossref] [PubMed]
  40. G. Goldstein, Polarized Light (Marcel Dekker, 2003).
  41. R. M. A. Azzam, I. M. Elminyawi, and A. M. El-Saba, “General analysis and optimization of the four-detector photopolarimeter,” J. Opt. Soc. Am. A 5(5), 681–689 (1988).
    [Crossref]
  42. A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
    [Crossref] [PubMed]
  43. L. Neumann, R. Hegedus, G. Horvath, and R. Garcia, “Applications for high precision imaging polarimetry,” in Proceedings of the Fourth Eurographics conference on Computational Aesthetics in Graphics, Visualization and Imaging (Eurographics Association, 2008), pp.89–97.
  44. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and mueller-matrix ellipsometers,” Appl. Opt. 38(16), 3490–3502 (1999).
    [Crossref] [PubMed]
  45. S. Huard, Polarisation de la lumière (Masson, 1994).
  46. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [Crossref]
  47. T. K. Kalkandjiev and M. A. Bursukova, “Conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
    [Crossref]
  48. M. H. Smith, J. B. Woodruff, and J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
    [Crossref]
  49. A. Peinado, A. Lizana, and J. Campos, “Use of ferroelectric liquid crystal panels to control state and degree of polarization in light beams,” Opt. Lett. 39(3), 659–662 (2014).
    [Crossref] [PubMed]

2014 (4)

N. L. Do, E. Garcia-Caurel, N. Bererd, N. Moncoffre, and D. Gorse-Pomonti, “Determination of thicknesses of oxide films grown on titanium under argon irradiation by spectroscopic ellipsometry,” J. Nucl. Mater. 447(1–3), 197–207 (2014).
[Crossref]

Y. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and E. U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 8960, 89601Q (2014).
[Crossref]

E. Chironi and C. Iemmi, “Bounding the relative errors associated with a complete Stokes polarimeter,” J. Opt. Soc. Am. A 31(1), 75–80 (2014).
[Crossref] [PubMed]

A. Peinado, A. Lizana, and J. Campos, “Use of ferroelectric liquid crystal panels to control state and degree of polarization in light beams,” Opt. Lett. 39(3), 659–662 (2014).
[Crossref] [PubMed]

2013 (5)

2012 (3)

2011 (3)

A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimized Stokes polarimeters based on a single twisted nematic liquid-crystal device for the minimization of noise propagation,” Appl. Opt. 50(28), 5437–5445 (2011).
[Crossref] [PubMed]

P. Raman, K. Fuller, D. Gregory, M. Newchurch, and J. Christy, “Broadband (UV-VIS-NIR) Mueller matrix polarimeter,” Proc. SPIE 8160, 816013 (2011).
[Crossref]

S. Savenkova, R. Muttiahb, E. Oberemoka, and A. Klimova, “Incomplete active polarimetry: Measurement of the block-diagonal scattering matrix,” J. of Quant. Spec. and Rad. Trans. 112(11), 1796–1802 (2011).
[Crossref]

2010 (4)

2009 (2)

2008 (4)

T. K. Kalkandjiev and M. A. Bursukova, “Conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
[Crossref]

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
[Crossref] [PubMed]

T. K. Kalkandjiev and M. A. Bursukova, “Conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
[Crossref]

2007 (1)

M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton's diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[Crossref]

2006 (1)

2005 (1)

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

2004 (1)

E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” J. Thin Solid Films 455–456, 120–123 (2004).
[Crossref]

2003 (1)

2002 (1)

2000 (2)

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

1999 (2)

1998 (1)

1996 (1)

1995 (1)

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[Crossref]

1992 (1)

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

1988 (1)

1981 (1)

J. C. Kemp and M. S. Barbour, “A photoelastic-modulator polarimeter at Pine Mountain Observatory,” Publ. Astron. Soc. Pac. 93, 521–525 (1981).
[Crossref]

1978 (1)

A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. 44, 436–439 (1978).

Alvarez-Herrero, A.

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

Anna, G.

Antonelli, M. R.

Arteaga, O.

Azzam, R. M. A.

Ballantine, K. E.

D. P. O’Dwyer, C. F. Phelan, K. E. Ballantine, Y. P. Rakovich, J. G. Lunney, and J. F. Donegan, “Conical diffraction of linearly polarized light controls the angular position of a microscopic object,” Opt. Exp. 18(26), 27319–27326 (2010).
[Crossref]

Barbour, M. S.

J. C. Kemp and M. S. Barbour, “A photoelastic-modulator polarimeter at Pine Mountain Observatory,” Publ. Astron. Soc. Pac. 93, 521–525 (1981).
[Crossref]

Belskii, A. M.

A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. 44, 436–439 (1978).

Benali, A.

Bererd, N.

N. L. Do, E. Garcia-Caurel, N. Bererd, N. Moncoffre, and D. Gorse-Pomonti, “Determination of thicknesses of oxide films grown on titanium under argon irradiation by spectroscopic ellipsometry,” J. Nucl. Mater. 447(1–3), 197–207 (2014).
[Crossref]

Berry, M. V.

M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton's diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[Crossref]

Bigué, L.

Bursukova, M. A.

T. K. Kalkandjiev and M. A. Bursukova, “Conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
[Crossref]

T. K. Kalkandjiev and M. A. Bursukova, “Conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
[Crossref]

Campos, J.

Carnegie, D.

Y. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and E. U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 8960, 89601Q (2014).
[Crossref]

Chambellan, C. W.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

Chenault, D. B.

Chipman, R. A.

Chironi, E.

Christy, J.

P. Raman, K. Fuller, D. Gregory, M. Newchurch, and J. Christy, “Broadband (UV-VIS-NIR) Mueller matrix polarimeter,” Proc. SPIE 8160, 816013 (2011).
[Crossref]

Compain, E.

David, N.

A. Lizana, M. Foldyna, M. Stchakovsky, B. Georges, N. David, and E. Garcia-Caurel, “Enhanced sensitivity to dielectric function and thickness of absorbing thin film by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry,” J. Phys. D Appl. Phys. 46(10), 105501 (2013).
[Crossref]

De Martino, A.

del Toro, J. C.

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

Dereniak, E. L.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

Descour, M. R.

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Do, N. L.

N. L. Do, E. Garcia-Caurel, N. Bererd, N. Moncoffre, and D. Gorse-Pomonti, “Determination of thicknesses of oxide films grown on titanium under argon irradiation by spectroscopic ellipsometry,” J. Nucl. Mater. 447(1–3), 197–207 (2014).
[Crossref]

Domingo, V.

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

Donegan, J. F.

D. P. O’Dwyer, C. F. Phelan, K. E. Ballantine, Y. P. Rakovich, J. G. Lunney, and J. F. Donegan, “Conical diffraction of linearly polarized light controls the angular position of a microscopic object,” Opt. Exp. 18(26), 27319–27326 (2010).
[Crossref]

Drevillon, B.

Drévillon, B.

Dunn, R. B.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

Elminyawi, I. M.

Elmore, D. F.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

El-Saba, A. M.

Elsner, A. E.

Fernández, E.

Foldyna, M.

A. Lizana, M. Foldyna, M. Stchakovsky, B. Georges, N. David, and E. Garcia-Caurel, “Enhanced sensitivity to dielectric function and thickness of absorbing thin film by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry,” J. Phys. D Appl. Phys. 46(10), 105501 (2013).
[Crossref]

Foulonneau, A.

Freudenthal, J.

Fuller, K.

P. Raman, K. Fuller, D. Gregory, M. Newchurch, and J. Christy, “Broadband (UV-VIS-NIR) Mueller matrix polarimeter,” Proc. SPIE 8160, 816013 (2011).
[Crossref]

Garcia, J. P.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Garcia-Caurel, E.

N. L. Do, E. Garcia-Caurel, N. Bererd, N. Moncoffre, and D. Gorse-Pomonti, “Determination of thicknesses of oxide films grown on titanium under argon irradiation by spectroscopic ellipsometry,” J. Nucl. Mater. 447(1–3), 197–207 (2014).
[Crossref]

A. Lizana, M. Foldyna, M. Stchakovsky, B. Georges, N. David, and E. Garcia-Caurel, “Enhanced sensitivity to dielectric function and thickness of absorbing thin film by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry,” J. Phys. D Appl. Phys. 46(10), 105501 (2013).
[Crossref]

E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” J. Thin Solid Films 455–456, 120–123 (2004).
[Crossref]

A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
[Crossref] [PubMed]

Gasent, J. L.

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

Gayet, B.

Gendre, L.

Georges, B.

A. Lizana, M. Foldyna, M. Stchakovsky, B. Georges, N. David, and E. Garcia-Caurel, “Enhanced sensitivity to dielectric function and thickness of absorbing thin film by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry,” J. Phys. D Appl. Phys. 46(10), 105501 (2013).
[Crossref]

Goldstein, D. L.

Gorse-Pomonti, D.

N. L. Do, E. Garcia-Caurel, N. Bererd, N. Moncoffre, and D. Gorse-Pomonti, “Determination of thicknesses of oxide films grown on titanium under argon irradiation by spectroscopic ellipsometry,” J. Nucl. Mater. 447(1–3), 197–207 (2014).
[Crossref]

Goudail, F.

Gregory, D.

P. Raman, K. Fuller, D. Gregory, M. Newchurch, and J. Christy, “Broadband (UV-VIS-NIR) Mueller matrix polarimeter,” Proc. SPIE 8160, 816013 (2011).
[Crossref]

Heredero, R. L.

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

Howe, J. D.

M. H. Smith, J. B. Woodruff, and J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
[Crossref]

Hull, H. K.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

Iemmi, C.

Jeffrey, M. R.

M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton's diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[Crossref]

Jochum, L.

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

Kahr, B.

Kalkandjiev, T. K.

Kemme, S. A.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

Kemp, J. C.

J. C. Kemp and M. S. Barbour, “A photoelastic-modulator polarimeter at Pine Mountain Observatory,” Publ. Astron. Soc. Pac. 93, 521–525 (1981).
[Crossref]

Khapalyuk, A. P.

A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. 44, 436–439 (1978).

Kim, Y. K.

Klimova, A.

S. Savenkova, R. Muttiahb, E. Oberemoka, and A. Klimova, “Incomplete active polarimetry: Measurement of the block-diagonal scattering matrix,” J. of Quant. Spec. and Rad. Trans. 112(11), 1796–1802 (2011).
[Crossref]

Lacey, L. B.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

Lara, D.

Laude, B.

Leach, T. W.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

Lites, B. W.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

Lizana, A.

Locke, A. M.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

Loiko, Y.

Loiko, Y. V.

López, A. C.

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

Lu, S.-Y.

Lunney, J. G.

D. P. O’Dwyer, C. F. Phelan, K. E. Ballantine, Y. P. Rakovich, J. G. Lunney, and J. F. Donegan, “Conical diffraction of linearly polarized light controls the angular position of a microscopic object,” Opt. Exp. 18(26), 27319–27326 (2010).
[Crossref]

Martínez, V.

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

Mompart, J.

Moncoffre, N.

N. L. Do, E. Garcia-Caurel, N. Bererd, N. Moncoffre, and D. Gorse-Pomonti, “Determination of thicknesses of oxide films grown on titanium under argon irradiation by spectroscopic ellipsometry,” J. Nucl. Mater. 447(1–3), 197–207 (2014).
[Crossref]

Muttiahb, R.

S. Savenkova, R. Muttiahb, E. Oberemoka, and A. Klimova, “Incomplete active polarimetry: Measurement of the block-diagonal scattering matrix,” J. of Quant. Spec. and Rad. Trans. 112(11), 1796–1802 (2011).
[Crossref]

Newchurch, M.

P. Raman, K. Fuller, D. Gregory, M. Newchurch, and J. Christy, “Broadband (UV-VIS-NIR) Mueller matrix polarimeter,” Proc. SPIE 8160, 816013 (2011).
[Crossref]

Novikova, T.

O’Dwyer, D. P.

D. P. O’Dwyer, C. F. Phelan, K. E. Ballantine, Y. P. Rakovich, J. G. Lunney, and J. F. Donegan, “Conical diffraction of linearly polarized light controls the angular position of a microscopic object,” Opt. Exp. 18(26), 27319–27326 (2010).
[Crossref]

Oberemoka, E.

S. Savenkova, R. Muttiahb, E. Oberemoka, and A. Klimova, “Incomplete active polarimetry: Measurement of the block-diagonal scattering matrix,” J. of Quant. Spec. and Rad. Trans. 112(11), 1796–1802 (2011).
[Crossref]

Paterson, C.

Peinado, A.

Pezzaniti, J. L.

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[Crossref]

Phelan, C. F.

D. P. O’Dwyer, C. F. Phelan, K. E. Ballantine, Y. P. Rakovich, J. G. Lunney, and J. F. Donegan, “Conical diffraction of linearly polarized light controls the angular position of a microscopic object,” Opt. Exp. 18(26), 27319–27326 (2010).
[Crossref]

Phipps, G. S.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

Pierangelo, A.

Poirier, S.

Rafailov, E. U.

Y. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and E. U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 8960, 89601Q (2014).
[Crossref]

Rakovich, Y. P.

D. P. O’Dwyer, C. F. Phelan, K. E. Ballantine, Y. P. Rakovich, J. G. Lunney, and J. F. Donegan, “Conical diffraction of linearly polarized light controls the angular position of a microscopic object,” Opt. Exp. 18(26), 27319–27326 (2010).
[Crossref]

Raman, P.

P. Raman, K. Fuller, D. Gregory, M. Newchurch, and J. Christy, “Broadband (UV-VIS-NIR) Mueller matrix polarimeter,” Proc. SPIE 8160, 816013 (2011).
[Crossref]

Sabatke, D. S.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

Savenkova, S.

S. Savenkova, R. Muttiahb, E. Oberemoka, and A. Klimova, “Incomplete active polarimetry: Measurement of the block-diagonal scattering matrix,” J. of Quant. Spec. and Rad. Trans. 112(11), 1796–1802 (2011).
[Crossref]

Schuenke, J. A.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

Shaw, J. A.

Skumanich, A.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

Smith, M. H.

M. H. Smith, J. B. Woodruff, and J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
[Crossref]

Sokolovskii, G. S.

Y. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and E. U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 8960, 89601Q (2014).
[Crossref]

Stchakovsky, M.

A. Lizana, M. Foldyna, M. Stchakovsky, B. Georges, N. David, and E. Garcia-Caurel, “Enhanced sensitivity to dielectric function and thickness of absorbing thin film by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry,” J. Phys. D Appl. Phys. 46(10), 105501 (2013).
[Crossref]

Streander, K. V.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

Sweatt, W. C.

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

Tomczyk, S.

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

Tomizawa, H.

Turpin, A.

Twietmeyer, K. M.

Tyo, J. S.

Uribe-Patarroyo, N.

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

Validire, P.

VanNasdale, D.

Vidal, J.

Wang, B.

Woodruff, J. B.

M. H. Smith, J. B. Woodruff, and J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
[Crossref]

Zhao, Y.

Appl. Opt. (8)

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

L. Gendre, A. Foulonneau, and L. Bigué, “Imaging linear polarimetry using a single ferroelectric liquid crystal modulator,” Appl. Opt. 49(25), 4687–4699 (2010).
[Crossref] [PubMed]

A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimized Stokes polarimeters based on a single twisted nematic liquid-crystal device for the minimization of noise propagation,” Appl. Opt. 50(28), 5437–5445 (2011).
[Crossref] [PubMed]

E. Compain and B. Drevillon, “Broadband division-of-amplitude polarimeter based on uncoated prisms,” Appl. Opt. 37(25), 5938–5944 (1998).
[Crossref] [PubMed]

J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41(4), 619–630 (2002).
[Crossref] [PubMed]

A. Peinado, A. Lizana, and J. Campos, “Optimization and tolerance analysis of a polarimeter with ferroelectric liquid crystals,” Appl. Opt. 52(23), 5748–5757 (2013).
[Crossref] [PubMed]

O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51(28), 6805–6817 (2012).
[Crossref] [PubMed]

E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and mueller-matrix ellipsometers,” Appl. Opt. 38(16), 3490–3502 (1999).
[Crossref] [PubMed]

J. Nucl. Mater. (1)

N. L. Do, E. Garcia-Caurel, N. Bererd, N. Moncoffre, and D. Gorse-Pomonti, “Determination of thicknesses of oxide films grown on titanium under argon irradiation by spectroscopic ellipsometry,” J. Nucl. Mater. 447(1–3), 197–207 (2014).
[Crossref]

J. of Quant. Spec. and Rad. Trans. (1)

S. Savenkova, R. Muttiahb, E. Oberemoka, and A. Klimova, “Incomplete active polarimetry: Measurement of the block-diagonal scattering matrix,” J. of Quant. Spec. and Rad. Trans. 112(11), 1796–1802 (2011).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Phys. D Appl. Phys. (1)

A. Lizana, M. Foldyna, M. Stchakovsky, B. Georges, N. David, and E. Garcia-Caurel, “Enhanced sensitivity to dielectric function and thickness of absorbing thin film by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry,” J. Phys. D Appl. Phys. 46(10), 105501 (2013).
[Crossref]

J. Thin Solid Films (1)

E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller polarimeter based on liquid crystal devices,” J. Thin Solid Films 455–456, 120–123 (2004).
[Crossref]

Opt. Eng. (1)

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[Crossref]

Opt. Exp. (1)

D. P. O’Dwyer, C. F. Phelan, K. E. Ballantine, Y. P. Rakovich, J. G. Lunney, and J. F. Donegan, “Conical diffraction of linearly polarized light controls the angular position of a microscopic object,” Opt. Exp. 18(26), 27319–27326 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Opt. Spectrosc. (1)

A. M. Belskii and A. P. Khapalyuk, “Internal conical refraction of bounded light beams in biaxial crystals,” Opt. Spectrosc. 44, 436–439 (1978).

Phys. Status Solidi C (1)

N. Uribe-Patarroyo, A. Alvarez-Herrero, R. L. Heredero, J. C. del Toro, A. C. López, V. Domingo, J. L. Gasent, L. Jochum, and V. Martínez, “IMaX: a polarimeter based on liquid crystal variable retarders for an aerospace mission,” Phys. Status Solidi C 5(5), 1041–1045 (2008).
[Crossref]

Proc. SPIE (8)

D. F. Elmore, B. W. Lites, S. Tomczyk, A. Skumanich, R. B. Dunn, J. A. Schuenke, K. V. Streander, T. W. Leach, C. W. Chambellan, H. K. Hull, and L. B. Lacey, “Advanced Stokes polarimeter: a new instrument for solar magnetic field research,” Proc. SPIE 1746, 138795 (1992).
[Crossref]

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 58880V (2005).
[Crossref]

P. Raman, K. Fuller, D. Gregory, M. Newchurch, and J. Christy, “Broadband (UV-VIS-NIR) Mueller matrix polarimeter,” Proc. SPIE 8160, 816013 (2011).
[Crossref]

T. K. Kalkandjiev and M. A. Bursukova, “Conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
[Crossref]

Y. V. Loiko, G. S. Sokolovskii, D. Carnegie, A. Turpin, J. Mompart, and E. U. Rafailov, “Laser beams with conical refraction patterns,” Proc. SPIE 8960, 89601Q (2014).
[Crossref]

D. S. Sabatke, A. M. Locke, M. R. Descour, W. C. Sweatt, J. P. Garcia, E. L. Dereniak, S. A. Kemme, and G. S. Phipps, “Figures of merit for complete Stokes polarimeter optimization,” Proc. SPIE 4133, 75–81 (2000).
[Crossref]

T. K. Kalkandjiev and M. A. Bursukova, “Conical refraction: an experimental introduction,” Proc. SPIE 6994, 69940B (2008).
[Crossref]

M. H. Smith, J. B. Woodruff, and J. D. Howe, “Beam wander considerations in imaging polarimetry,” Proc. SPIE 3754, 50–54 (1999).
[Crossref]

Prog. Opt. (1)

M. V. Berry and M. R. Jeffrey, “Conical diffraction: Hamilton's diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007).
[Crossref]

Publ. Astron. Soc. Pac. (1)

J. C. Kemp and M. S. Barbour, “A photoelastic-modulator polarimeter at Pine Mountain Observatory,” Publ. Astron. Soc. Pac. 93, 521–525 (1981).
[Crossref]

Other (7)

G. Goldstein, Polarized Light (Marcel Dekker, 2003).

P. Taylor, Theory and Applications of Numerical Analysis (Academic, 1996).

R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, 1995).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland Publishing Company, 1977).

V. A. Escobar, J. R. Rangel, N. V. Pérez, G. Andrade, and J. L. Dávila, Infrared Spectroscopy – Materials Sciencie, Enginneering and Technology (Intech, 2012), Chap. 9.

L. Neumann, R. Hegedus, G. Horvath, and R. Garcia, “Applications for high precision imaging polarimetry,” in Proceedings of the Fourth Eurographics conference on Computational Aesthetics in Graphics, Visualization and Imaging (Eurographics Association, 2008), pp.89–97.

S. Huard, Polarisation de la lumière (Masson, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Set-up of the polarimeter based on two biaxial crystals. The incident light beam is divided in two arms for being separately analyzed.

Fig. 2
Fig. 2

CR polarimeter PAs represented over the Poincaré sphere for the arm 1 (in red) and the arm 2 (in blue) and for different values of: (a) the WP retardance (with θWP = 0 degrees); (b) the WP orientation (with δ = 90 degrees).

Fig. 3
Fig. 3

CN indicator as function of: (a) the WP retardance (and constant θWP = 0°); (b) the WP orientation (and constant δ = 90°).

Fig. 4
Fig. 4

Equally Weighted Variance (EWV) and Stokes element variances as a function of the QWP orientation (for 720 PAs).

Fig. 5
Fig. 5

Condition Number for the 50 different simulated PSAs deviated from the theoretical configuration: (a) for 32 PAs; (b) for 720 PAs.

Fig. 6
Fig. 6

Stokes elements error for a tolerance of 1 degree at: (a) the QWP orientation (θWP); (b) the QWP retardance (δ); (c)-(d) the orientations of the equivalents polarizers located along the light rings at the first and second arm (θP1 and θP2), respectively.

Fig. 7
Fig. 7

Accuracy of Stokes polarimeter based on two biaxial crystals as function of the tolerance of different parameters involved in the set-up.

Fig. 8
Fig. 8

CN as function of the QWP orientation located at arm 2, considering the experimental B-S Mueller matrix. The red point is marking the minimum CN (2.08), obtained at 44°.

Fig. 9
Fig. 9

Fully polarized linear SoP measurements as a function of the polarizer orientation: (a) azimuth, (b) ellipticity and (c) DoP.

Fig. 10
Fig. 10

Fully polarized SoP (with variable ellipticity) measurement, as a function of the polarizer orientation: (a) azimuth, (b) ellipticity and (c) DoP.

Fig. 11
Fig. 11

Partially polarized light, generated by a λ/2 FLC cell when sending a rectangular signal of duty cycle t1 over a period of T: (a) azimuth, (b) ellipticity and (c) DoP as function of t1/T.

Fig. 12
Fig. 12

Stokes elements error for the corresponding sets of experimental measurements: (a) fully polarized linear SoPs (shown in Fig. 9), (b) fully polarized elliptical SoPs (shown in Fig. 10) and (c) partially polarized SoPs (shown in Fig. 11).

Tables (2)

Tables Icon

Table 1 Stokes variances and EWV for the CR based polarimeter when the number of PAs is equal to N = 8, 12, 20, 100 and 720.

Tables Icon

Table 2 Tolerance values to achieve a 0.02 of accuracy in the Stokes polarimeter.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I=AS.
S= A 1 I=QI S i = j=1 n ( q i,j I j ),
δ S i 2 = j=1 n ( S i I j ) 2 δ I j 2 =δ I 2 j=1 n q i,j 2 ,
S est = A 1 A exp S,
e s =S S est =( Id A 1 A exp )S,
P A 1 ( θ LP )= 1 2 ( 1 cos2 θ LP sin2 θ LP 0 ),
P A 2 ( θ LP , θ WP ,δ )= 1 2 ( 1 p 1 p 2 p 3 ),
{ p 1 =cos2 θ LP [ cos 2 2 θ WP +cosδ sin 2 2 θ WP ]+sin2 θ LP [ ( 1cosδ )sin2 θ WP cos2 θ WP ], P 2 =cos2 θ LP [ ( 1cosδ )sin2 θ WP cos2 θ WP ]+sin2 θ LP [ sin 2 2 θ WP +cosδ cos 2 2 θ WP ], P 3 =cos2 θ LP [ sinδsin2 θ WP ]sin2 θ LP [ sinδcos2 θ WP ].
S k = ( 1 cos2 θ k cos2 ε k sin2 θ k cos2 ε k sin2 ε k ) T { ε k =kΔε π 4 ;Δε= π 2 N ε N θ θ k =kΔθ;Δθ= π N θ k=1,..., N ε N θ

Metrics