Abstract

Demagnetization cooling utilizes dipolar relaxations that couple the internal degree of freedom (spin) to the external (angular momentum) in order to cool an atomic cloud efficiently. Optical pumping into a dark state constantly recycles the atoms that were thermally excited to higher spin states. The net energy taken away by a single photon is very favorable since the lost energy per atom is the Zeeman energy rather than the recoil energy. As the density of the atomic sample rises the presence of the photons leads to limiting processes. In our previous publication [Volchkov et al. (2014)] we have shown that light-assisted collisions are such an important limiting process. In this paper we suppress light-assisted collisions by detuning the optical pumping light such that the Condon point coincides with the first node of the ground state wave function of two colliding atoms. This leads to an increased cooling efficiency χ ≥ 17 as well as to increased maximum densities of n ≈ 1 · 1020 m−3. However, due to the high number of involved molecular states the net suppression is not strong enough to reach quantum degeneracy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of long-range collisions between atoms on laser cooling

A. M. Smith and K. Burnett
J. Opt. Soc. Am. B 8(8) 1592-1611 (1991)

Efficient cooling and trapping of strontium atoms

I. Courtillot, A. Quessada, R. P. Kovacich, J-J. Zondy, A. Landragin, A. Clairon, and P. Lemonde
Opt. Lett. 28(6) 468-470 (2003)

Mechanical effects of light in optical resonators

Peter Domokos and Helmut Ritsch
J. Opt. Soc. Am. B 20(5) 1098-1130 (2003)

References

  • View by:
  • |
  • |
  • |

  1. K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–Einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
    [Crossref]
  2. M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, “Strongly dipolar Bose–Einstein condensate of dysprosium,” Phys. Rev. Lett. 107, 190401 (2011).
    [Crossref]
  3. S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose–Einstein condensation of strontium,” Phys. Rev. Lett. 103, 200401 (2009).
    [Crossref]
  4. S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, “Bose–Einstein condensation of alkaline earth atoms: 40Ca,” Phys. Rev. Lett. 103, 130401 (2009).
    [Crossref]
  5. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose–Einstein condensation of chromium,” Phys. Rev. Lett. 94, 160401 (2005).
    [Crossref]
  6. Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
    [Crossref]
  7. K. Góral, L. Santos, and M. Lewenstein, “Quantum phases of dipolar bosons in optical lattices,” Phys. Rev. Lett. 88, 170406 (2002).
    [Crossref] [PubMed]
  8. P. Pedri and L. Santos, “Two-dimensional bright solitons in dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 95, 200404 (2005).
    [Crossref]
  9. L. Santos, G. V. Shlyapnikov, and M. Lewenstein, “Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 90, 250403 (2003).
    [Crossref]
  10. M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
    [Crossref]
  11. E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature (London) 467, 820–823 (2010).
    [Crossref]
  12. A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
    [Crossref]
  13. M. Lu, S. H. Youn, and B. L. Lev, “Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium,” Phys. Rev. A 83, 012510 (2011).
    [Crossref]
  14. T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an inter-combination transition,” Phys. Rev. A 60, R745–R748 (1999).
    [Crossref]
  15. H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
    [Crossref]
  16. J. I. Cirac and M. Lewenstein, “Pumping atoms into a Bose–Einstein condensate in the boson-accumulation regime,” Phys. Rev. A 53, 2466–2476 (1996).
    [Crossref] [PubMed]
  17. L. Santos, F. Floegel, T. Pfau, and M. Lewenstein, “Continuous optical loading of a Bose–Einstein condensate,” Phys. Rev. A 63, 063408 (2001).
    [Crossref]
  18. S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser cooling to quantum degeneracy,” Phys. Rev. Lett. 110, 263003 (2013).
    [Crossref] [PubMed]
  19. M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, “Demagnetization cooling of a gas,” Nat. Phys. 2, 765–768 (2006).
    [Crossref]
  20. V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Efficient demagnetization cooling of atoms and its limits,” Phys. Rev. A 89, 043417 (2014).
    [Crossref]
  21. K. Burnett, P. S. Julienne, and K.-A. Suominen, “Laser-driven collisions between atoms in a Bose–Einstein condensed gas,” Phys. Rev. Lett. 77, 1416–1419 (1996).
    [Crossref] [PubMed]
  22. S. Hensler, A. Görlitz, S. Giovanazzi, and T. Pfau, “Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms,” Appl. Phys. B 77, 765 (2003).
    [Crossref]
  23. S. Hensler, A. Greiner, J. Stuhler, and T. Pfau, “Depolarisation cooling of an atomic cloud,” Europhys. Lett. 71, 918 (2005).
    [Crossref]
  24. A. J. Olson, R. J. Niffenegger, and Y. P. Chen, “Optimizing the efficiency of evaporative cooling in optical dipole traps,” Phys. Rev. A 87, 053613 (2013).
    [Crossref]
  25. A. Gallagher and D. E. Pritchard, “Exoergic collisions of cold Na*-Na,” Phys. Rev. Lett. 63, 957–960 (1989).
    [Crossref] [PubMed]
  26. N. S. Kampel, A. Griesmaier, M. P. H. Steenstrup, F. Kaminski, E. S. Polzik, and J. H. Müller, “Effect of light assisted collisions on matter wave coherence in superradiant Bose–Einstein condensates,” Phys. Rev. Lett. 108, 090401 (2012).
    [Crossref]
  27. Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Photoassociation spectroscopy of laser-cooled ytterbium atoms,” Phys. Rev. Lett. 93, 123202 (2004).
    [Crossref] [PubMed]
  28. C. Boisseau, E. Audouard, J. Vigué, and P. S. Julienne, “Reflection approximation in photoassociation spectroscopy,” Phys. Rev. A 62, 052705 (2000).
    [Crossref]
  29. F. Mies and P. S. Julienne, “Oscillatory excimer emission: an analytic model,” IEEE J. Quantum Electron. 15, 272–280 (1979).
    [Crossref]
  30. F. Hund, “Zur Deutung einiger Erscheinungen in den Molekelspektren,” Zeitschrift für Physik 36, 657–674 (1926).
    [Crossref]
  31. E. Wigner and E. Witmer, “Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik,” Zeitschrift für Physik 51, 859–886 (1928).
    [Crossref]
  32. K. Andersson, “The electronic spectrum of Cr2,” Chem. Phys. Lett. 237, 212–221 (1995).
    [Crossref]
  33. J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, “Observation of feshbach resonances in an ultracold gas of 52Cr,” Phys. Rev. Lett. 94, 183201 (2005).
    [Crossref]
  34. M. Movre and G. Pichler, “Resonance interaction and self-broadening of alkali resonance lines. I. Adiabatic potential curves,” J. Phys. B 10, 2631 (1977).
    [Crossref]
  35. J. Rührig, T. Bäuerle, A. Griesmaier, P. Julienne, E. Tiesinga, and T. Pfau, “Photoassociation of Cr2,” (2015). In preparation.
  36. M. Falkenau, V. V. Volchkov, J. Rührig, A. Griesmaier, and T. Pfau, “Continuous loading of a conservative potential trap from an atomic beam,” Phys. Rev. Lett. 106, 163002 (2011).
    [Crossref] [PubMed]
  37. V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Sisyphus cooling in a continuously loaded trap,” New J. Phys. 15, 093012 (2013).
    [Crossref]
  38. V. Vuletić, C. Chin, A. J. Kerman, and S. Chu, “Suppression of atomic radiative collisions by tuning the ground state scattering length,” Phys. Rev. Lett. 83, 943–946 (1999).
    [Crossref]
  39. A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S. Giovanazzi, “Comparing contact and dipolar interactions in a Bose–Einstein condensate,” Phys. Rev. Lett. 97, 250402 (2006).
    [Crossref]

2014 (1)

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Efficient demagnetization cooling of atoms and its limits,” Phys. Rev. A 89, 043417 (2014).
[Crossref]

2013 (3)

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser cooling to quantum degeneracy,” Phys. Rev. Lett. 110, 263003 (2013).
[Crossref] [PubMed]

A. J. Olson, R. J. Niffenegger, and Y. P. Chen, “Optimizing the efficiency of evaporative cooling in optical dipole traps,” Phys. Rev. A 87, 053613 (2013).
[Crossref]

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Sisyphus cooling in a continuously loaded trap,” New J. Phys. 15, 093012 (2013).
[Crossref]

2012 (4)

N. S. Kampel, A. Griesmaier, M. P. H. Steenstrup, F. Kaminski, E. S. Polzik, and J. H. Müller, “Effect of light assisted collisions on matter wave coherence in superradiant Bose–Einstein condensates,” Phys. Rev. Lett. 108, 090401 (2012).
[Crossref]

A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
[Crossref]

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–Einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
[Crossref]

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

2011 (3)

M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, “Strongly dipolar Bose–Einstein condensate of dysprosium,” Phys. Rev. Lett. 107, 190401 (2011).
[Crossref]

M. Lu, S. H. Youn, and B. L. Lev, “Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium,” Phys. Rev. A 83, 012510 (2011).
[Crossref]

M. Falkenau, V. V. Volchkov, J. Rührig, A. Griesmaier, and T. Pfau, “Continuous loading of a conservative potential trap from an atomic beam,” Phys. Rev. Lett. 106, 163002 (2011).
[Crossref] [PubMed]

2010 (1)

E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature (London) 467, 820–823 (2010).
[Crossref]

2009 (2)

S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose–Einstein condensation of strontium,” Phys. Rev. Lett. 103, 200401 (2009).
[Crossref]

S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, “Bose–Einstein condensation of alkaline earth atoms: 40Ca,” Phys. Rev. Lett. 103, 130401 (2009).
[Crossref]

2006 (2)

M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, “Demagnetization cooling of a gas,” Nat. Phys. 2, 765–768 (2006).
[Crossref]

A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S. Giovanazzi, “Comparing contact and dipolar interactions in a Bose–Einstein condensate,” Phys. Rev. Lett. 97, 250402 (2006).
[Crossref]

2005 (4)

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose–Einstein condensation of chromium,” Phys. Rev. Lett. 94, 160401 (2005).
[Crossref]

P. Pedri and L. Santos, “Two-dimensional bright solitons in dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 95, 200404 (2005).
[Crossref]

S. Hensler, A. Greiner, J. Stuhler, and T. Pfau, “Depolarisation cooling of an atomic cloud,” Europhys. Lett. 71, 918 (2005).
[Crossref]

J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, “Observation of feshbach resonances in an ultracold gas of 52Cr,” Phys. Rev. Lett. 94, 183201 (2005).
[Crossref]

2004 (1)

Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Photoassociation spectroscopy of laser-cooled ytterbium atoms,” Phys. Rev. Lett. 93, 123202 (2004).
[Crossref] [PubMed]

2003 (3)

S. Hensler, A. Görlitz, S. Giovanazzi, and T. Pfau, “Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms,” Appl. Phys. B 77, 765 (2003).
[Crossref]

L. Santos, G. V. Shlyapnikov, and M. Lewenstein, “Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 90, 250403 (2003).
[Crossref]

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref]

2002 (1)

K. Góral, L. Santos, and M. Lewenstein, “Quantum phases of dipolar bosons in optical lattices,” Phys. Rev. Lett. 88, 170406 (2002).
[Crossref] [PubMed]

2001 (1)

L. Santos, F. Floegel, T. Pfau, and M. Lewenstein, “Continuous optical loading of a Bose–Einstein condensate,” Phys. Rev. A 63, 063408 (2001).
[Crossref]

2000 (1)

C. Boisseau, E. Audouard, J. Vigué, and P. S. Julienne, “Reflection approximation in photoassociation spectroscopy,” Phys. Rev. A 62, 052705 (2000).
[Crossref]

1999 (3)

V. Vuletić, C. Chin, A. J. Kerman, and S. Chu, “Suppression of atomic radiative collisions by tuning the ground state scattering length,” Phys. Rev. Lett. 83, 943–946 (1999).
[Crossref]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an inter-combination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

1996 (2)

J. I. Cirac and M. Lewenstein, “Pumping atoms into a Bose–Einstein condensate in the boson-accumulation regime,” Phys. Rev. A 53, 2466–2476 (1996).
[Crossref] [PubMed]

K. Burnett, P. S. Julienne, and K.-A. Suominen, “Laser-driven collisions between atoms in a Bose–Einstein condensed gas,” Phys. Rev. Lett. 77, 1416–1419 (1996).
[Crossref] [PubMed]

1995 (1)

K. Andersson, “The electronic spectrum of Cr2,” Chem. Phys. Lett. 237, 212–221 (1995).
[Crossref]

1989 (1)

A. Gallagher and D. E. Pritchard, “Exoergic collisions of cold Na*-Na,” Phys. Rev. Lett. 63, 957–960 (1989).
[Crossref] [PubMed]

1979 (1)

F. Mies and P. S. Julienne, “Oscillatory excimer emission: an analytic model,” IEEE J. Quantum Electron. 15, 272–280 (1979).
[Crossref]

1977 (1)

M. Movre and G. Pichler, “Resonance interaction and self-broadening of alkali resonance lines. I. Adiabatic potential curves,” J. Phys. B 10, 2631 (1977).
[Crossref]

1928 (1)

E. Wigner and E. Witmer, “Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik,” Zeitschrift für Physik 51, 859–886 (1928).
[Crossref]

1926 (1)

F. Hund, “Zur Deutung einiger Erscheinungen in den Molekelspektren,” Zeitschrift für Physik 36, 657–674 (1926).
[Crossref]

Aikawa, K.

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–Einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
[Crossref]

A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
[Crossref]

Andersson, K.

K. Andersson, “The electronic spectrum of Cr2,” Chem. Phys. Lett. 237, 212–221 (1995).
[Crossref]

Appel, O.

S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, “Bose–Einstein condensation of alkaline earth atoms: 40Ca,” Phys. Rev. Lett. 103, 130401 (2009).
[Crossref]

Audouard, E.

C. Boisseau, E. Audouard, J. Vigué, and P. S. Julienne, “Reflection approximation in photoassociation spectroscopy,” Phys. Rev. A 62, 052705 (2000).
[Crossref]

Baier, S.

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–Einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
[Crossref]

Barry, J. F.

E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature (London) 467, 820–823 (2010).
[Crossref]

Bäuerle, T.

J. Rührig, T. Bäuerle, A. Griesmaier, P. Julienne, E. Tiesinga, and T. Pfau, “Photoassociation of Cr2,” (2015). In preparation.

Boisseau, C.

C. Boisseau, E. Audouard, J. Vigué, and P. S. Julienne, “Reflection approximation in photoassociation spectroscopy,” Phys. Rev. A 62, 052705 (2000).
[Crossref]

Burdick, N. Q.

M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, “Strongly dipolar Bose–Einstein condensate of dysprosium,” Phys. Rev. Lett. 107, 190401 (2011).
[Crossref]

Burnett, K.

K. Burnett, P. S. Julienne, and K.-A. Suominen, “Laser-driven collisions between atoms in a Bose–Einstein condensed gas,” Phys. Rev. Lett. 77, 1416–1419 (1996).
[Crossref] [PubMed]

Chen, Y. P.

A. J. Olson, R. J. Niffenegger, and Y. P. Chen, “Optimizing the efficiency of evaporative cooling in optical dipole traps,” Phys. Rev. A 87, 053613 (2013).
[Crossref]

Chin, C.

V. Vuletić, C. Chin, A. J. Kerman, and S. Chu, “Suppression of atomic radiative collisions by tuning the ground state scattering length,” Phys. Rev. Lett. 83, 943–946 (1999).
[Crossref]

Chu, S.

V. Vuletić, C. Chin, A. J. Kerman, and S. Chu, “Suppression of atomic radiative collisions by tuning the ground state scattering length,” Phys. Rev. Lett. 83, 943–946 (1999).
[Crossref]

Cirac, J. I.

J. I. Cirac and M. Lewenstein, “Pumping atoms into a Bose–Einstein condensate in the boson-accumulation regime,” Phys. Rev. A 53, 2466–2476 (1996).
[Crossref] [PubMed]

DeMille, D.

E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature (London) 467, 820–823 (2010).
[Crossref]

Englert, B. G. U.

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

Falkenau, M.

M. Falkenau, V. V. Volchkov, J. Rührig, A. Griesmaier, and T. Pfau, “Continuous loading of a conservative potential trap from an atomic beam,” Phys. Rev. Lett. 106, 163002 (2011).
[Crossref] [PubMed]

Fattori, M.

M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, “Demagnetization cooling of a gas,” Nat. Phys. 2, 765–768 (2006).
[Crossref]

A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S. Giovanazzi, “Comparing contact and dipolar interactions in a Bose–Einstein condensate,” Phys. Rev. Lett. 97, 250402 (2006).
[Crossref]

Ferlaino, F.

A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
[Crossref]

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–Einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
[Crossref]

Floegel, F.

L. Santos, F. Floegel, T. Pfau, and M. Lewenstein, “Continuous optical loading of a Bose–Einstein condensate,” Phys. Rev. A 63, 063408 (2001).
[Crossref]

Frisch, A.

A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
[Crossref]

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–Einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
[Crossref]

Gallagher, A.

A. Gallagher and D. E. Pritchard, “Exoergic collisions of cold Na*-Na,” Phys. Rev. Lett. 63, 957–960 (1989).
[Crossref] [PubMed]

Giovanazzi, S.

A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S. Giovanazzi, “Comparing contact and dipolar interactions in a Bose–Einstein condensate,” Phys. Rev. Lett. 97, 250402 (2006).
[Crossref]

S. Hensler, A. Görlitz, S. Giovanazzi, and T. Pfau, “Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms,” Appl. Phys. B 77, 765 (2003).
[Crossref]

Glöckner, R.

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

Goetz, S.

M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, “Demagnetization cooling of a gas,” Nat. Phys. 2, 765–768 (2006).
[Crossref]

Góral, K.

K. Góral, L. Santos, and M. Lewenstein, “Quantum phases of dipolar bosons in optical lattices,” Phys. Rev. Lett. 88, 170406 (2002).
[Crossref] [PubMed]

Görlitz, A.

S. Hensler, A. Görlitz, S. Giovanazzi, and T. Pfau, “Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms,” Appl. Phys. B 77, 765 (2003).
[Crossref]

Greiner, A.

S. Hensler, A. Greiner, J. Stuhler, and T. Pfau, “Depolarisation cooling of an atomic cloud,” Europhys. Lett. 71, 918 (2005).
[Crossref]

Griesmaier, A.

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Efficient demagnetization cooling of atoms and its limits,” Phys. Rev. A 89, 043417 (2014).
[Crossref]

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Sisyphus cooling in a continuously loaded trap,” New J. Phys. 15, 093012 (2013).
[Crossref]

N. S. Kampel, A. Griesmaier, M. P. H. Steenstrup, F. Kaminski, E. S. Polzik, and J. H. Müller, “Effect of light assisted collisions on matter wave coherence in superradiant Bose–Einstein condensates,” Phys. Rev. Lett. 108, 090401 (2012).
[Crossref]

M. Falkenau, V. V. Volchkov, J. Rührig, A. Griesmaier, and T. Pfau, “Continuous loading of a conservative potential trap from an atomic beam,” Phys. Rev. Lett. 106, 163002 (2011).
[Crossref] [PubMed]

A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S. Giovanazzi, “Comparing contact and dipolar interactions in a Bose–Einstein condensate,” Phys. Rev. Lett. 97, 250402 (2006).
[Crossref]

M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, “Demagnetization cooling of a gas,” Nat. Phys. 2, 765–768 (2006).
[Crossref]

J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, “Observation of feshbach resonances in an ultracold gas of 52Cr,” Phys. Rev. Lett. 94, 183201 (2005).
[Crossref]

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose–Einstein condensation of chromium,” Phys. Rev. Lett. 94, 160401 (2005).
[Crossref]

J. Rührig, T. Bäuerle, A. Griesmaier, P. Julienne, E. Tiesinga, and T. Pfau, “Photoassociation of Cr2,” (2015). In preparation.

Grimm, R.

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser cooling to quantum degeneracy,” Phys. Rev. Lett. 110, 263003 (2013).
[Crossref] [PubMed]

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–Einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
[Crossref]

A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
[Crossref]

S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose–Einstein condensation of strontium,” Phys. Rev. Lett. 103, 200401 (2009).
[Crossref]

Hensler, S.

M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, “Demagnetization cooling of a gas,” Nat. Phys. 2, 765–768 (2006).
[Crossref]

S. Hensler, A. Greiner, J. Stuhler, and T. Pfau, “Depolarisation cooling of an atomic cloud,” Europhys. Lett. 71, 918 (2005).
[Crossref]

J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, “Observation of feshbach resonances in an ultracold gas of 52Cr,” Phys. Rev. Lett. 94, 183201 (2005).
[Crossref]

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose–Einstein condensation of chromium,” Phys. Rev. Lett. 94, 160401 (2005).
[Crossref]

S. Hensler, A. Görlitz, S. Giovanazzi, and T. Pfau, “Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms,” Appl. Phys. B 77, 765 (2003).
[Crossref]

Honda, K.

Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Photoassociation spectroscopy of laser-cooled ytterbium atoms,” Phys. Rev. Lett. 93, 123202 (2004).
[Crossref] [PubMed]

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an inter-combination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

Huang, B.

S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose–Einstein condensation of strontium,” Phys. Rev. Lett. 103, 200401 (2009).
[Crossref]

Hund, F.

F. Hund, “Zur Deutung einiger Erscheinungen in den Molekelspektren,” Zeitschrift für Physik 36, 657–674 (1926).
[Crossref]

Ido, T.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

Isoya, Y.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

Julienne, P.

J. Rührig, T. Bäuerle, A. Griesmaier, P. Julienne, E. Tiesinga, and T. Pfau, “Photoassociation of Cr2,” (2015). In preparation.

Julienne, P. S.

C. Boisseau, E. Audouard, J. Vigué, and P. S. Julienne, “Reflection approximation in photoassociation spectroscopy,” Phys. Rev. A 62, 052705 (2000).
[Crossref]

K. Burnett, P. S. Julienne, and K.-A. Suominen, “Laser-driven collisions between atoms in a Bose–Einstein condensed gas,” Phys. Rev. Lett. 77, 1416–1419 (1996).
[Crossref] [PubMed]

F. Mies and P. S. Julienne, “Oscillatory excimer emission: an analytic model,” IEEE J. Quantum Electron. 15, 272–280 (1979).
[Crossref]

Kaminski, F.

N. S. Kampel, A. Griesmaier, M. P. H. Steenstrup, F. Kaminski, E. S. Polzik, and J. H. Müller, “Effect of light assisted collisions on matter wave coherence in superradiant Bose–Einstein condensates,” Phys. Rev. Lett. 108, 090401 (2012).
[Crossref]

Kampel, N. S.

N. S. Kampel, A. Griesmaier, M. P. H. Steenstrup, F. Kaminski, E. S. Polzik, and J. H. Müller, “Effect of light assisted collisions on matter wave coherence in superradiant Bose–Einstein condensates,” Phys. Rev. Lett. 108, 090401 (2012).
[Crossref]

Katori, H.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

Kerman, A. J.

V. Vuletić, C. Chin, A. J. Kerman, and S. Chu, “Suppression of atomic radiative collisions by tuning the ground state scattering length,” Phys. Rev. Lett. 83, 943–946 (1999).
[Crossref]

Koch, T.

A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S. Giovanazzi, “Comparing contact and dipolar interactions in a Bose–Einstein condensate,” Phys. Rev. Lett. 97, 250402 (2006).
[Crossref]

M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, “Demagnetization cooling of a gas,” Nat. Phys. 2, 765–768 (2006).
[Crossref]

Komori, K.

Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Photoassociation spectroscopy of laser-cooled ytterbium atoms,” Phys. Rev. Lett. 93, 123202 (2004).
[Crossref] [PubMed]

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref]

Kraft, S.

S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, “Bose–Einstein condensation of alkaline earth atoms: 40Ca,” Phys. Rev. Lett. 103, 130401 (2009).
[Crossref]

Kumakura, M.

Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Photoassociation spectroscopy of laser-cooled ytterbium atoms,” Phys. Rev. Lett. 93, 123202 (2004).
[Crossref] [PubMed]

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref]

Kuwamoto, T.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an inter-combination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

Kuwata-Gonokami, M.

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

Lev, B. L.

M. Lu, S. H. Youn, and B. L. Lev, “Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium,” Phys. Rev. A 83, 012510 (2011).
[Crossref]

M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, “Strongly dipolar Bose–Einstein condensate of dysprosium,” Phys. Rev. Lett. 107, 190401 (2011).
[Crossref]

Lewenstein, M.

L. Santos, G. V. Shlyapnikov, and M. Lewenstein, “Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 90, 250403 (2003).
[Crossref]

K. Góral, L. Santos, and M. Lewenstein, “Quantum phases of dipolar bosons in optical lattices,” Phys. Rev. Lett. 88, 170406 (2002).
[Crossref] [PubMed]

L. Santos, F. Floegel, T. Pfau, and M. Lewenstein, “Continuous optical loading of a Bose–Einstein condensate,” Phys. Rev. A 63, 063408 (2001).
[Crossref]

J. I. Cirac and M. Lewenstein, “Pumping atoms into a Bose–Einstein condensate in the boson-accumulation regime,” Phys. Rev. A 53, 2466–2476 (1996).
[Crossref] [PubMed]

Lu, M.

M. Lu, S. H. Youn, and B. L. Lev, “Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium,” Phys. Rev. A 83, 012510 (2011).
[Crossref]

M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, “Strongly dipolar Bose–Einstein condensate of dysprosium,” Phys. Rev. Lett. 107, 190401 (2011).
[Crossref]

Maki, K.

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref]

Mark, M.

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–Einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
[Crossref]

A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
[Crossref]

Mielenz, M.

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

Mies, F.

F. Mies and P. S. Julienne, “Oscillatory excimer emission: an analytic model,” IEEE J. Quantum Electron. 15, 272–280 (1979).
[Crossref]

Motsch, M.

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

Movre, M.

M. Movre and G. Pichler, “Resonance interaction and self-broadening of alkali resonance lines. I. Adiabatic potential curves,” J. Phys. B 10, 2631 (1977).
[Crossref]

Müller, J. H.

N. S. Kampel, A. Griesmaier, M. P. H. Steenstrup, F. Kaminski, E. S. Polzik, and J. H. Müller, “Effect of light assisted collisions on matter wave coherence in superradiant Bose–Einstein condensates,” Phys. Rev. Lett. 108, 090401 (2012).
[Crossref]

Niffenegger, R. J.

A. J. Olson, R. J. Niffenegger, and Y. P. Chen, “Optimizing the efficiency of evaporative cooling in optical dipole traps,” Phys. Rev. A 87, 053613 (2013).
[Crossref]

Olson, A. J.

A. J. Olson, R. J. Niffenegger, and Y. P. Chen, “Optimizing the efficiency of evaporative cooling in optical dipole traps,” Phys. Rev. A 87, 053613 (2013).
[Crossref]

Pasquiou, B.

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser cooling to quantum degeneracy,” Phys. Rev. Lett. 110, 263003 (2013).
[Crossref] [PubMed]

Pedri, P.

P. Pedri and L. Santos, “Two-dimensional bright solitons in dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 95, 200404 (2005).
[Crossref]

Pfau, T.

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Efficient demagnetization cooling of atoms and its limits,” Phys. Rev. A 89, 043417 (2014).
[Crossref]

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Sisyphus cooling in a continuously loaded trap,” New J. Phys. 15, 093012 (2013).
[Crossref]

M. Falkenau, V. V. Volchkov, J. Rührig, A. Griesmaier, and T. Pfau, “Continuous loading of a conservative potential trap from an atomic beam,” Phys. Rev. Lett. 106, 163002 (2011).
[Crossref] [PubMed]

A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S. Giovanazzi, “Comparing contact and dipolar interactions in a Bose–Einstein condensate,” Phys. Rev. Lett. 97, 250402 (2006).
[Crossref]

M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, “Demagnetization cooling of a gas,” Nat. Phys. 2, 765–768 (2006).
[Crossref]

S. Hensler, A. Greiner, J. Stuhler, and T. Pfau, “Depolarisation cooling of an atomic cloud,” Europhys. Lett. 71, 918 (2005).
[Crossref]

J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, “Observation of feshbach resonances in an ultracold gas of 52Cr,” Phys. Rev. Lett. 94, 183201 (2005).
[Crossref]

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose–Einstein condensation of chromium,” Phys. Rev. Lett. 94, 160401 (2005).
[Crossref]

S. Hensler, A. Görlitz, S. Giovanazzi, and T. Pfau, “Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms,” Appl. Phys. B 77, 765 (2003).
[Crossref]

L. Santos, F. Floegel, T. Pfau, and M. Lewenstein, “Continuous optical loading of a Bose–Einstein condensate,” Phys. Rev. A 63, 063408 (2001).
[Crossref]

J. Rührig, T. Bäuerle, A. Griesmaier, P. Julienne, E. Tiesinga, and T. Pfau, “Photoassociation of Cr2,” (2015). In preparation.

Pichler, G.

M. Movre and G. Pichler, “Resonance interaction and self-broadening of alkali resonance lines. I. Adiabatic potential curves,” J. Phys. B 10, 2631 (1977).
[Crossref]

Polzik, E. S.

N. S. Kampel, A. Griesmaier, M. P. H. Steenstrup, F. Kaminski, E. S. Polzik, and J. H. Müller, “Effect of light assisted collisions on matter wave coherence in superradiant Bose–Einstein condensates,” Phys. Rev. Lett. 108, 090401 (2012).
[Crossref]

Prehn, A.

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

Pritchard, D. E.

A. Gallagher and D. E. Pritchard, “Exoergic collisions of cold Na*-Na,” Phys. Rev. Lett. 63, 957–960 (1989).
[Crossref] [PubMed]

Rempe, G.

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

Riehle, F.

S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, “Bose–Einstein condensation of alkaline earth atoms: 40Ca,” Phys. Rev. Lett. 103, 130401 (2009).
[Crossref]

Rietzler, A.

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–Einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
[Crossref]

A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
[Crossref]

Rührig, J.

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Efficient demagnetization cooling of atoms and its limits,” Phys. Rev. A 89, 043417 (2014).
[Crossref]

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Sisyphus cooling in a continuously loaded trap,” New J. Phys. 15, 093012 (2013).
[Crossref]

M. Falkenau, V. V. Volchkov, J. Rührig, A. Griesmaier, and T. Pfau, “Continuous loading of a conservative potential trap from an atomic beam,” Phys. Rev. Lett. 106, 163002 (2011).
[Crossref] [PubMed]

J. Rührig, T. Bäuerle, A. Griesmaier, P. Julienne, E. Tiesinga, and T. Pfau, “Photoassociation of Cr2,” (2015). In preparation.

Santos, L.

P. Pedri and L. Santos, “Two-dimensional bright solitons in dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 95, 200404 (2005).
[Crossref]

L. Santos, G. V. Shlyapnikov, and M. Lewenstein, “Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 90, 250403 (2003).
[Crossref]

K. Góral, L. Santos, and M. Lewenstein, “Quantum phases of dipolar bosons in optical lattices,” Phys. Rev. Lett. 88, 170406 (2002).
[Crossref] [PubMed]

L. Santos, F. Floegel, T. Pfau, and M. Lewenstein, “Continuous optical loading of a Bose–Einstein condensate,” Phys. Rev. A 63, 063408 (2001).
[Crossref]

Schindler, J.

A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
[Crossref]

Schreck, F.

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser cooling to quantum degeneracy,” Phys. Rev. Lett. 110, 263003 (2013).
[Crossref] [PubMed]

S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose–Einstein condensation of strontium,” Phys. Rev. Lett. 103, 200401 (2009).
[Crossref]

Shlyapnikov, G. V.

L. Santos, G. V. Shlyapnikov, and M. Lewenstein, “Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 90, 250403 (2003).
[Crossref]

Shuman, E. S.

E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature (London) 467, 820–823 (2010).
[Crossref]

Simoni, A.

J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, “Observation of feshbach resonances in an ultracold gas of 52Cr,” Phys. Rev. Lett. 94, 183201 (2005).
[Crossref]

Sommer, C.

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

Steenstrup, M. P. H.

N. S. Kampel, A. Griesmaier, M. P. H. Steenstrup, F. Kaminski, E. S. Polzik, and J. H. Müller, “Effect of light assisted collisions on matter wave coherence in superradiant Bose–Einstein condensates,” Phys. Rev. Lett. 108, 090401 (2012).
[Crossref]

Stellmer, S.

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser cooling to quantum degeneracy,” Phys. Rev. Lett. 110, 263003 (2013).
[Crossref] [PubMed]

S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose–Einstein condensation of strontium,” Phys. Rev. Lett. 103, 200401 (2009).
[Crossref]

Sterr, U.

S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, “Bose–Einstein condensation of alkaline earth atoms: 40Ca,” Phys. Rev. Lett. 103, 130401 (2009).
[Crossref]

Stuhler, J.

M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, “Demagnetization cooling of a gas,” Nat. Phys. 2, 765–768 (2006).
[Crossref]

A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S. Giovanazzi, “Comparing contact and dipolar interactions in a Bose–Einstein condensate,” Phys. Rev. Lett. 97, 250402 (2006).
[Crossref]

S. Hensler, A. Greiner, J. Stuhler, and T. Pfau, “Depolarisation cooling of an atomic cloud,” Europhys. Lett. 71, 918 (2005).
[Crossref]

J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, “Observation of feshbach resonances in an ultracold gas of 52Cr,” Phys. Rev. Lett. 94, 183201 (2005).
[Crossref]

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose–Einstein condensation of chromium,” Phys. Rev. Lett. 94, 160401 (2005).
[Crossref]

Suominen, K.-A.

K. Burnett, P. S. Julienne, and K.-A. Suominen, “Laser-driven collisions between atoms in a Bose–Einstein condensed gas,” Phys. Rev. Lett. 77, 1416–1419 (1996).
[Crossref] [PubMed]

Takahashi, Y.

Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Photoassociation spectroscopy of laser-cooled ytterbium atoms,” Phys. Rev. Lett. 93, 123202 (2004).
[Crossref] [PubMed]

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an inter-combination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

Takano, T.

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref]

Takasu, Y.

Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Photoassociation spectroscopy of laser-cooled ytterbium atoms,” Phys. Rev. Lett. 93, 123202 (2004).
[Crossref] [PubMed]

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref]

Tey, M. K.

S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose–Einstein condensation of strontium,” Phys. Rev. Lett. 103, 200401 (2009).
[Crossref]

Tiesinga, E.

J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, “Observation of feshbach resonances in an ultracold gas of 52Cr,” Phys. Rev. Lett. 94, 183201 (2005).
[Crossref]

J. Rührig, T. Bäuerle, A. Griesmaier, P. Julienne, E. Tiesinga, and T. Pfau, “Photoassociation of Cr2,” (2015). In preparation.

van Buuren, L. D.

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

Vigué, J.

C. Boisseau, E. Audouard, J. Vigué, and P. S. Julienne, “Reflection approximation in photoassociation spectroscopy,” Phys. Rev. A 62, 052705 (2000).
[Crossref]

Vogt, F.

S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, “Bose–Einstein condensation of alkaline earth atoms: 40Ca,” Phys. Rev. Lett. 103, 130401 (2009).
[Crossref]

Volchkov, V. V.

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Efficient demagnetization cooling of atoms and its limits,” Phys. Rev. A 89, 043417 (2014).
[Crossref]

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Sisyphus cooling in a continuously loaded trap,” New J. Phys. 15, 093012 (2013).
[Crossref]

M. Falkenau, V. V. Volchkov, J. Rührig, A. Griesmaier, and T. Pfau, “Continuous loading of a conservative potential trap from an atomic beam,” Phys. Rev. Lett. 106, 163002 (2011).
[Crossref] [PubMed]

Vuletic, V.

V. Vuletić, C. Chin, A. J. Kerman, and S. Chu, “Suppression of atomic radiative collisions by tuning the ground state scattering length,” Phys. Rev. Lett. 83, 943–946 (1999).
[Crossref]

Werner, J.

J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, “Observation of feshbach resonances in an ultracold gas of 52Cr,” Phys. Rev. Lett. 94, 183201 (2005).
[Crossref]

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose–Einstein condensation of chromium,” Phys. Rev. Lett. 94, 160401 (2005).
[Crossref]

Wigner, E.

E. Wigner and E. Witmer, “Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik,” Zeitschrift für Physik 51, 859–886 (1928).
[Crossref]

Witmer, E.

E. Wigner and E. Witmer, “Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik,” Zeitschrift für Physik 51, 859–886 (1928).
[Crossref]

Yabuzaki, T.

Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Photoassociation spectroscopy of laser-cooled ytterbium atoms,” Phys. Rev. Lett. 93, 123202 (2004).
[Crossref] [PubMed]

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an inter-combination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

Youn, S. H.

M. Lu, S. H. Youn, and B. L. Lev, “Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium,” Phys. Rev. A 83, 012510 (2011).
[Crossref]

M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, “Strongly dipolar Bose–Einstein condensate of dysprosium,” Phys. Rev. Lett. 107, 190401 (2011).
[Crossref]

Zeppenfeld, M.

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

Zupanic, E.

A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
[Crossref]

Appl. Phys. B (1)

S. Hensler, A. Görlitz, S. Giovanazzi, and T. Pfau, “Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms,” Appl. Phys. B 77, 765 (2003).
[Crossref]

Chem. Phys. Lett. (1)

K. Andersson, “The electronic spectrum of Cr2,” Chem. Phys. Lett. 237, 212–221 (1995).
[Crossref]

Europhys. Lett. (1)

S. Hensler, A. Greiner, J. Stuhler, and T. Pfau, “Depolarisation cooling of an atomic cloud,” Europhys. Lett. 71, 918 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

F. Mies and P. S. Julienne, “Oscillatory excimer emission: an analytic model,” IEEE J. Quantum Electron. 15, 272–280 (1979).
[Crossref]

J. Phys. B (1)

M. Movre and G. Pichler, “Resonance interaction and self-broadening of alkali resonance lines. I. Adiabatic potential curves,” J. Phys. B 10, 2631 (1977).
[Crossref]

Nat. Phys. (1)

M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau, “Demagnetization cooling of a gas,” Nat. Phys. 2, 765–768 (2006).
[Crossref]

Nature (London) (2)

M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of electrically trapped polyatomic molecules,” Nature (London) 491, 570–573 (2012).
[Crossref]

E. S. Shuman, J. F. Barry, and D. DeMille, “Laser cooling of a diatomic molecule,” Nature (London) 467, 820–823 (2010).
[Crossref]

New J. Phys. (1)

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Sisyphus cooling in a continuously loaded trap,” New J. Phys. 15, 093012 (2013).
[Crossref]

Phys. Rev. A (8)

C. Boisseau, E. Audouard, J. Vigué, and P. S. Julienne, “Reflection approximation in photoassociation spectroscopy,” Phys. Rev. A 62, 052705 (2000).
[Crossref]

A. J. Olson, R. J. Niffenegger, and Y. P. Chen, “Optimizing the efficiency of evaporative cooling in optical dipole traps,” Phys. Rev. A 87, 053613 (2013).
[Crossref]

A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, “Narrow-line magneto-optical trap for erbium,” Phys. Rev. A 85, 051401 (2012).
[Crossref]

M. Lu, S. H. Youn, and B. L. Lev, “Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium,” Phys. Rev. A 83, 012510 (2011).
[Crossref]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an inter-combination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

V. V. Volchkov, J. Rührig, T. Pfau, and A. Griesmaier, “Efficient demagnetization cooling of atoms and its limits,” Phys. Rev. A 89, 043417 (2014).
[Crossref]

J. I. Cirac and M. Lewenstein, “Pumping atoms into a Bose–Einstein condensate in the boson-accumulation regime,” Phys. Rev. A 53, 2466–2476 (1996).
[Crossref] [PubMed]

L. Santos, F. Floegel, T. Pfau, and M. Lewenstein, “Continuous optical loading of a Bose–Einstein condensate,” Phys. Rev. A 63, 063408 (2001).
[Crossref]

Phys. Rev. Lett. (19)

S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, “Laser cooling to quantum degeneracy,” Phys. Rev. Lett. 110, 263003 (2013).
[Crossref] [PubMed]

K. Burnett, P. S. Julienne, and K.-A. Suominen, “Laser-driven collisions between atoms in a Bose–Einstein condensed gas,” Phys. Rev. Lett. 77, 1416–1419 (1996).
[Crossref] [PubMed]

H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, “Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature,” Phys. Rev. Lett. 82, 1116–1119 (1999).
[Crossref]

K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, “Bose–Einstein condensation of erbium,” Phys. Rev. Lett. 108, 210401 (2012).
[Crossref]

M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, “Strongly dipolar Bose–Einstein condensate of dysprosium,” Phys. Rev. Lett. 107, 190401 (2011).
[Crossref]

S. Stellmer, M. K. Tey, B. Huang, R. Grimm, and F. Schreck, “Bose–Einstein condensation of strontium,” Phys. Rev. Lett. 103, 200401 (2009).
[Crossref]

S. Kraft, F. Vogt, O. Appel, F. Riehle, and U. Sterr, “Bose–Einstein condensation of alkaline earth atoms: 40Ca,” Phys. Rev. Lett. 103, 130401 (2009).
[Crossref]

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose–Einstein condensation of chromium,” Phys. Rev. Lett. 94, 160401 (2005).
[Crossref]

Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose–Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003).
[Crossref]

K. Góral, L. Santos, and M. Lewenstein, “Quantum phases of dipolar bosons in optical lattices,” Phys. Rev. Lett. 88, 170406 (2002).
[Crossref] [PubMed]

P. Pedri and L. Santos, “Two-dimensional bright solitons in dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 95, 200404 (2005).
[Crossref]

L. Santos, G. V. Shlyapnikov, and M. Lewenstein, “Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates,” Phys. Rev. Lett. 90, 250403 (2003).
[Crossref]

A. Gallagher and D. E. Pritchard, “Exoergic collisions of cold Na*-Na,” Phys. Rev. Lett. 63, 957–960 (1989).
[Crossref] [PubMed]

N. S. Kampel, A. Griesmaier, M. P. H. Steenstrup, F. Kaminski, E. S. Polzik, and J. H. Müller, “Effect of light assisted collisions on matter wave coherence in superradiant Bose–Einstein condensates,” Phys. Rev. Lett. 108, 090401 (2012).
[Crossref]

Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Photoassociation spectroscopy of laser-cooled ytterbium atoms,” Phys. Rev. Lett. 93, 123202 (2004).
[Crossref] [PubMed]

J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, T. Pfau, A. Simoni, and E. Tiesinga, “Observation of feshbach resonances in an ultracold gas of 52Cr,” Phys. Rev. Lett. 94, 183201 (2005).
[Crossref]

M. Falkenau, V. V. Volchkov, J. Rührig, A. Griesmaier, and T. Pfau, “Continuous loading of a conservative potential trap from an atomic beam,” Phys. Rev. Lett. 106, 163002 (2011).
[Crossref] [PubMed]

V. Vuletić, C. Chin, A. J. Kerman, and S. Chu, “Suppression of atomic radiative collisions by tuning the ground state scattering length,” Phys. Rev. Lett. 83, 943–946 (1999).
[Crossref]

A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, and S. Giovanazzi, “Comparing contact and dipolar interactions in a Bose–Einstein condensate,” Phys. Rev. Lett. 97, 250402 (2006).
[Crossref]

Zeitschrift für Physik (2)

F. Hund, “Zur Deutung einiger Erscheinungen in den Molekelspektren,” Zeitschrift für Physik 36, 657–674 (1926).
[Crossref]

E. Wigner and E. Witmer, “Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik,” Zeitschrift für Physik 51, 859–886 (1928).
[Crossref]

Other (1)

J. Rührig, T. Bäuerle, A. Griesmaier, P. Julienne, E. Tiesinga, and T. Pfau, “Photoassociation of Cr2,” (2015). In preparation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Sketch of the molecular potentials relevant for light-assisted collisions. For large separations R > RB the potential of two atoms in the ground state 7S3 +7 S3 is constant and Ψg has a node at Rn. For any detuning Δ of the laser the atoms may be resonantly excited at the Condon point RC. Light-assisted collisions are suppressed when the Condon point RC is tuned to match the node position Rn of the ground state scattering wave function because of the vanishing Franck-Condon factor. b) Separated atom limit: The presence of a magnetic field lifts the degeneracy between the Zeeman states and they are split up by the Zeeman energy Ez. Dipolar relaxations promote hot atoms (big red circle) from the lowest mJ = −3 state to higher spin states. The promoted atoms (small blue circle) lose the Zeeman energy Ez. Only the mJ = −3 state is a dark state for the σ polarized optical pumping light. Atoms in mJ > −3 are immediately pumped back to the mJ = −3 state where they thermalize with the cloud and effectively cool the sample.
Fig. 2
Fig. 2 Loss measurement with tilted magnetic fields. Each point is an average of 5 shots with 427nm light applied, without light and with no additional hold time. Errorbars are propagated standard deviations of the averages. The red curve is a fit of the function A · gC + C, where A is a scaling amplitude and C an offset to gC. The inset shows the gC in a semi-logarithmic representation where the node at 6.7GHz becomes clearly visible.
Fig. 3
Fig. 3 Phase-space density for fixed cooling times of 4s and fixed ΓSC = 2π · 400Hz. For red detunings (red data) several dips corresponding to bound molecular states can be observed. In between these levels ρred exceeds ρblue (blue data).
Fig. 4
Fig. 4 Comparison of the excited state density ne(t) and the excess losses ζ(t) for detunings a) smaller, b) equal and c) bigger than the optimum position. For the optimum detuning b) ζ(t) is suppressed and shows less temporal correlation than in any other case.
Fig. 5
Fig. 5 The blue squares show data taken at the optimum detuning Δ/2π = −9 GHz. For comparison the gray circles show data taken at Δ/2π = −360MHz [20]. a) Temporal evolution of the cloud temperatures: For optimized detunings we observe an increased cooling rate of 23μK/s (red line). b) Observed peak densities while demagnetization cooling. The observed maximum peak density at optimized detuning is increased by a factor of 2. c) Double-logarithmic plot of the number of atoms N versus ρ to visualize the efficiency χ. For evaporative cooling typical χ are below 4. Previous experiments with Δ/2π = −360MHz had a slope of χ ∼ 6.5 [20]. At the nodal position we obtain efficiencies of χ ≥ 17.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

β dr + = ( σ 1 + 2 σ 2 ) v rel thermal ,
h ¯ Δ = C 3 R C 3 .
K loss 1 k ( Ω ( R C ) ) 2 f C
blue : f C = 1 D C | Ψ g ( R C ) | 2
D C = | d ( V e V g ) d R | R > R B | d V e d R | 3 C 3 R 4
Ψ g ( R ) = 2 μ π h ¯ 2 k a ( R ) sin ( k ρ ˜ ( R ) )
a ( R ) = 1 ( R B R ) 4 ,
ρ ˜ ( R ) = R ( 1 A s R 2 3 ( R B R ) 4 )
Γ binary n λ ¯ 3 b c 2 f 3 γ nat ( Ω A Δ ) 2 ( a ( R C ) ρ ˜ ( R C ) R C ) 2 = n λ ¯ 3 b c 2 f 3 Γ sc g C .

Metrics