Abstract

In this paper we present the first semiconductor disk laser (SDL) emitting simultaneously two collinearly overlapping cross-polarized gigahertz modelocked pulse trains with different pulse repetition rates. Using only a simple photo detector and a microwave spectrum analyzer directly down-converts the frequency comb difference from the optical to the microwave frequency domain. With this setup, the relative carrier-envelope-offset (CEO) frequency can be accessed directly without an f-to2f interferometer. A very compact design is obtained using the modelocked integrated external-cavity surface emitting laser (MIXSEL) which is part of the family of optically pumped SDLs and similar to a vertical external cavity surface emitting laser (VECSEL) but with both gain and saturable absorber integrated into the same semiconductor wafer (i.e. MIXSEL chip). We then simply added an additional intracavity birefringent crystal inside the linear straight cavity between the output coupler and the MIXSEL chip which splits the cavity beam into two collinear but spatially separated cross-polarized beams on the MIXSEL chip. This results in two modelocked collinear and fully overlapping cross-polarized output beams with adjustable pulse repetition frequencies with excellent noise performance. We stabilized both pulse repetition rates of the dual comb MIXSEL.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [Crossref] [PubMed]
  2. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [Crossref] [PubMed]
  3. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref] [PubMed]
  4. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  5. B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  6. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
    [Crossref] [PubMed]
  7. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
    [Crossref]
  8. S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev. 3(5), 407–434 (2009).
    [Crossref]
  9. B. Rösener, M. Rattunde, R. Moser, S. Kaspar, C. Manz, K. Köhler, and J. Wagner, “GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range,” Proc. SPIE 7578, 75780X (2010).
  10. D. J. M. Stothard, J.-M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009).
    [Crossref] [PubMed]
  11. J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
    [Crossref]
  12. H. Kahle, R. Bek, M. Heldmaier, T. Schwarzbäck, M. Jetter, and P. Michler, “High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL,” Appl. Phys. Express 7(9), 092705 (2014).
    [Crossref]
  13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  14. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  15. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
    [Crossref]
  16. S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
    [Crossref]
  17. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
    [Crossref]
  18. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
    [Crossref] [PubMed]
  19. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
    [Crossref]
  20. C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
    [Crossref] [PubMed]
  21. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
    [Crossref]
  22. B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
    [Crossref] [PubMed]
  23. M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL),” Opt. Express 21(21), 24904–24911 (2013).
    [Crossref] [PubMed]
  24. M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
    [PubMed]
  25. M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude Noise and Timing Jitter Characterization of a High-Power Mode-Locked Integrated External-Cavity Surface Emitting Laser,” IEEE Photonics J. 6(1), 1–9 (2014).
    [Crossref]
  26. G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34(21), 3421–3423 (2009).
    [Crossref] [PubMed]
  27. F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
    [Crossref]
  28. I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39(19), 5471–5474 (2014).
    [Crossref] [PubMed]
  29. V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Sudmeyer, and U. Keller, “High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation,” Electron. Lett. 48(18), 1144–1145 (2012).
    [Crossref]
  30. R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002).
    [Crossref]
  31. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
    [Crossref]

2014 (5)

2013 (2)

2012 (3)

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Sudmeyer, and U. Keller, “High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation,” Electron. Lett. 48(18), 1144–1145 (2012).
[Crossref]

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

2011 (1)

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

2010 (3)

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

B. Rösener, M. Rattunde, R. Moser, S. Kaspar, C. Manz, K. Köhler, and J. Wagner, “GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range,” Proc. SPIE 7578, 75780X (2010).

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2007 (2)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

2006 (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

2005 (1)

2004 (1)

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2002 (2)

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002).
[Crossref]

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
[Crossref] [PubMed]

2000 (1)

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

1999 (2)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Alouini, M.

Anthon, D. W.

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

Apolonski, A.

Aschwanden, A.

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002).
[Crossref]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Baili, G.

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34(21), 3421–3423 (2009).
[Crossref] [PubMed]

Barbarin, Y.

Barrientos, J.

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Beere, H. E.

Bek, R.

H. Kahle, R. Bek, M. Heldmaier, T. Schwarzbäck, M. Jetter, and P. Michler, “High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL,” Appl. Phys. Express 7(9), 092705 (2014).
[Crossref]

Bellancourt, A.-R.

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Berger, J. D.

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Brehm, M.

Bretenaker, F.

Burns, D.

Calvez, S.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev. 3(5), 407–434 (2009).
[Crossref]

Camargo, F. A.

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

Caprara, A.

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Chilla, J. L.

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Dawson, M. D.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev. 3(5), 407–434 (2009).
[Crossref]

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Dhanjal, S.

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Dolfi, D.

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34(21), 3421–3423 (2009).
[Crossref] [PubMed]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Dunn, M. H.

Emaury, F.

Fill, E.

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Forget, N.

Garnache, A.

Georges, P.

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Gini, E.

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002).
[Crossref]

Gohle, C.

Golling, M.

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude Noise and Timing Jitter Characterization of a High-Power Mode-Locked Integrated External-Cavity Surface Emitting Laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
[PubMed]

M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL),” Opt. Express 21(21), 24904–24911 (2013).
[Crossref] [PubMed]

V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Sudmeyer, and U. Keller, “High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation,” Electron. Lett. 48(18), 1144–1145 (2012).
[Crossref]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Govorkov, S. V.

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

Griebner, U.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Guerandel, S.

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

Guina, M.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev. 3(5), 407–434 (2009).
[Crossref]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Hänsch, T.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Häring, R.

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Hastie, J. E.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev. 3(5), 407–434 (2009).
[Crossref]

Heinen, B.

Heldmaier, M.

H. Kahle, R. Bek, M. Heldmaier, T. Schwarzbäck, M. Jetter, and P. Michler, “High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL,” Appl. Phys. Express 7(9), 092705 (2014).
[Crossref]

Hoffmann, M.

V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Sudmeyer, and U. Keller, “High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation,” Electron. Lett. 48(18), 1144–1145 (2012).
[Crossref]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

Holleville, D.

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[Crossref] [PubMed]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Hoogland, S.

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Hopkins, J.-M.

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Jaquet, P.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jetter, M.

H. Kahle, R. Bek, M. Heldmaier, T. Schwarzbäck, M. Jetter, and P. Michler, “High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL,” Appl. Phys. Express 7(9), 092705 (2014).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kahle, H.

H. Kahle, R. Bek, M. Heldmaier, T. Schwarzbäck, M. Jetter, and P. Michler, “High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL,” Appl. Phys. Express 7(9), 092705 (2014).
[Crossref]

Kärtner, F. X.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kaspar, S.

B. Rösener, M. Rattunde, R. Moser, S. Kaspar, C. Manz, K. Köhler, and J. Wagner, “GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range,” Proc. SPIE 7578, 75780X (2010).

Keilmann, F.

Keller, U.

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude Noise and Timing Jitter Characterization of a High-Power Mode-Locked Integrated External-Cavity Surface Emitting Laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
[PubMed]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL),” Opt. Express 21(21), 24904–24911 (2013).
[Crossref] [PubMed]

V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Sudmeyer, and U. Keller, “High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation,” Electron. Lett. 48(18), 1144–1145 (2012).
[Crossref]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Klenner, A.

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude Noise and Timing Jitter Characterization of a High-Power Mode-Locked Integrated External-Cavity Surface Emitting Laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

Klopp, P.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Köhler, K.

B. Rösener, M. Rattunde, R. Moser, S. Kaspar, C. Manz, K. Köhler, and J. Wagner, “GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range,” Proc. SPIE 7578, 75780X (2010).

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Krausz, F.

Kunert, B.

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Lepert, A. Y.

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

Link, S. M.

Lucas-Leclin, G.

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

Maas, D. J. H. C.

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Mangold, M.

Manz, C.

B. Rösener, M. Rattunde, R. Moser, S. Kaspar, C. Manz, K. Köhler, and J. Wagner, “GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range,” Proc. SPIE 7578, 75780X (2010).

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Mayer, A. S.

Mefferd, W.

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

Michler, P.

H. Kahle, R. Bek, M. Heldmaier, T. Schwarzbäck, M. Jetter, and P. Michler, “High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL,” Appl. Phys. Express 7(9), 092705 (2014).
[Crossref]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Morier-Genoud, F.

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002).
[Crossref]

Morvan, L.

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34(21), 3421–3423 (2009).
[Crossref] [PubMed]

Moser, R.

B. Rösener, M. Rattunde, R. Moser, S. Kaspar, C. Manz, K. Köhler, and J. Wagner, “GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range,” Proc. SPIE 7578, 75780X (2010).

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Okhotnikov, O. G.

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev. 3(5), 407–434 (2009).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Paschotta, R.

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Piqué, N.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Pronin, O.

Rattunde, M.

B. Rösener, M. Rattunde, R. Moser, S. Kaspar, C. Manz, K. Köhler, and J. Wagner, “GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range,” Proc. SPIE 7578, 75780X (2010).

Ritchie, D. A.

Roberts, S. J.

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Rösener, B.

B. Rösener, M. Rattunde, R. Moser, S. Kaspar, C. Manz, K. Köhler, and J. Wagner, “GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range,” Proc. SPIE 7578, 75780X (2010).

Rudin, B.

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Sagnes, I.

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations,” Opt. Lett. 34(21), 3421–3423 (2009).
[Crossref] [PubMed]

Saraceno, C. J.

Schiller, S.

Schliesser, A.

Schwarzbäck, T.

H. Kahle, R. Bek, M. Heldmaier, T. Schwarzbäck, M. Jetter, and P. Michler, “High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL,” Appl. Phys. Express 7(9), 092705 (2014).
[Crossref]

Seidel, M.

Shu, Q.-Z.

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

Sieber, O. D.

V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Sudmeyer, and U. Keller, “High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation,” Electron. Lett. 48(18), 1144–1145 (2012).
[Crossref]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

Spinelli, L.

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Stolz, W.

Stothard, D. J. M.

Sudmeyer, T.

V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Sudmeyer, and U. Keller, “High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation,” Electron. Lett. 48(18), 1144–1145 (2012).
[Crossref]

Südmeyer, T.

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Telle, H. R.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Tilma, B. W.

Tournois, P.

Tropper, A. C.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[Crossref] [PubMed]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Unold, H. J.

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

van der Weide, D.

Wagner, J.

B. Rösener, M. Rattunde, R. Moser, S. Kaspar, C. Manz, K. Köhler, and J. Wagner, “GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range,” Proc. SPIE 7578, 75780X (2010).

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Weyers, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

Wilcox, K. G.

Wittwer, V. J.

Zaugg, C. A.

Znakovskaya, I.

Zorn, M.

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

Appl. Phys. B (2)

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, “Vertical integration of ultrafast semiconductor lasers,” Appl. Phys. B 88(4), 493–497 (2007).
[Crossref]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999).
[Crossref]

Appl. Phys. Express (1)

H. Kahle, R. Bek, M. Heldmaier, T. Schwarzbäck, M. Jetter, and P. Michler, “High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL,” Appl. Phys. Express 7(9), 092705 (2014).
[Crossref]

Appl. Phys. Lett. (1)

P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 98(7), 071103 (2011).
[Crossref]

Electron. Lett. (1)

V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Sudmeyer, and U. Keller, “High-power integrated ultrafast semiconductor disk laser: multi-Watt 10 GHz pulse generation,” Electron. Lett. 48(18), 1144–1145 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Häring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, “High–power passively mode–locked semiconductor lasers,” IEEE J. Quantum Electron. 38(9), 1268–1275 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

IEEE Photon. Technol. Lett. (3)

S. Hoogland, S. Dhanjal, A. C. Tropper, S. J. Roberts, R. Häring, R. Paschotta, and U. Keller, “Passively mode-locked diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[Crossref]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

F. A. Camargo, J. Barrientos, G. Baili, L. Morvan, D. Dolfi, D. Holleville, S. Guerandel, I. Sagnes, P. Georges, and G. Lucas-Leclin, “Coherent dual-frequency emission of a vertical external-cavity semiconductor laser at the cesium D2 line,” IEEE Photon. Technol. Lett. 24(14), 1218–1220 (2012).
[Crossref]

IEEE Photonics J. (1)

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude Noise and Timing Jitter Characterization of a High-Power Mode-Locked Integrated External-Cavity Surface Emitting Laser,” IEEE Photonics J. 6(1), 1–9 (2014).
[Crossref]

Laser Photon. Rev. (1)

S. Calvez, J. E. Hastie, M. Guina, O. G. Okhotnikov, and M. D. Dawson, “Semiconductor disk lasers for the generation of visible and ultraviolet radiation,” Laser Photon. Rev. 3(5), 407–434 (2009).
[Crossref]

Nat. Photonics (1)

B. Bernhardt, A. Ozawa, P. Jaquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. Hänsch, and N. Piqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Opt. Express (7)

C. A. Zaugg, A. Klenner, M. Mangold, A. S. Mayer, S. M. Link, F. Emaury, M. Golling, E. Gini, C. J. Saraceno, B. W. Tilma, and U. Keller, “Gigahertz self-referenceable frequency comb from a semiconductor disk laser,” Opt. Express 22(13), 16445–16455 (2014).
[Crossref] [PubMed]

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, “High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power,” Opt. Express 18(26), 27582–27588 (2010).
[Crossref] [PubMed]

M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL),” Opt. Express 21(21), 24904–24911 (2013).
[Crossref] [PubMed]

M. Mangold, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser,” Opt. Express 22(5), 6099–6107 (2014).
[PubMed]

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013).
[Crossref] [PubMed]

A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
[Crossref] [PubMed]

D. J. M. Stothard, J.-M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rep. (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Proc. SPIE (2)

J. D. Berger, D. W. Anthon, A. Caprara, J. L. Chilla, S. V. Govorkov, A. Y. Lepert, W. Mefferd, Q.-Z. Shu, and L. Spinelli, “20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm,” Proc. SPIE 8242, 824206 (2012).
[Crossref]

B. Rösener, M. Rattunde, R. Moser, S. Kaspar, C. Manz, K. Köhler, and J. Wagner, “GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range,” Proc. SPIE 7578, 75780X (2010).

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Potential gas sensing application using a dual comb MIXSEL: The two modelocked beams are separated with a polarizing beam splitter and one of the beams is guided through a gas cell. Both beams are then superimposed on a photo detector (PD) and measured with a microwave spectrum analyzer (MSA).

Fig. 2
Fig. 2

Potential pump-probe measurement without a mechanical delay line using a dual comb MIXSEL: device under test (DUT) in reflection (shown here) or transmission simply using a PD. The difference in pulse repetition frequency allows for a time dependent measurement.

Fig. 3
Fig. 3

Structure of the MIXSEL chip: an anti-reflection (AR) section is followed by the gain region containing 7 InGaAs quantum wells. The InAs quantum dot saturable absorber is placed between the distributed Bragg reflector (DBR) for the laser light and the pump light. The chip is flip-chip bonded to a diamond heat spreader.

Fig. 4
Fig. 4

a) A design image of the laser housing with the optically pumped dual comb MIXSEL. The linear straight cavity is formed by the MIXSEL chip end mirror and the output coupler (OC). An intracavity birefringent crystal is used to generate the two combs. One of the two pumping configuration is shown here with the orange path of the pump light. An aluminum housing surrounds the cavity and all optical elements are mounted directly on the base plate to minimize mechanical vibrations. b) Schematic of the setup, showing the paths of the two modelocked beams, p-polarized in red and s-polarized in blue. Again the pump beam is shown in orange. PBS: polarizing beam splitter, BS: beam splitter, PD: photo detector, OSA: optical spectrum analyzer, MSA: microwave spectrum analyzer, λ/2: half-wave plate

Fig. 5
Fig. 5

Modelocking results of the dual comb MIXSEL: a) Optical spectrum of the s-polarized pulse train; b) Optical spectrum of the p-polarized pulse train; c) 2nd harmonic intensity autocorrelation of the s-polarized beam; d) 2nd harmonic intensity autocorrelation of the p-polarized beam

Fig. 6
Fig. 6

a) Microwave spectrum analyzer (MSA) signal from DC to 10 GHz showing the pulse repetition frequencies and their higher harmonics as well as the beat-combs. The drop of the harmonic signal above 5 GHz is due to the limited bandwidth of the amplifier used to amplify the signal after the photo detector (PD) before the MSA. b) Zoom-in from DC to 1.9 GHz with a resolution bandwidth (RBW) of 3 kHz. c) Zoom-in around the first comb with a span of 150 MHz and a RBW of 1 kHz. d) Zoom-in around the pulse repetition frequencies with a span of 28 MHz and a RBW of 3 kHz. e) Zoom-in around DC with a span of 20 MHz and a RBW of 10 kHz. f -j) Simulated microwave spectrum in the corresponding frequency spans; In g) “mod” means modulo.

Fig. 7
Fig. 7

a) Measured microwave spectrum showing both relative CEO frequencies ΔfCEO1 and ΔfCEO2 and the pulse repetition frequency frep. b) Zoom-in around ΔfCEO1 with a frequency span of 8 MHz and a reduced RBW of 3 kHz. c) Simulated microwave spectrum showing both relative CEO frequencies ΔfCEO1 and ΔfCEO2 and the repetition frequency frep and the beat between the two relative CEO frequencies. d) Simulated ΔfCEO1 in an 8 MHz span.

Fig. 8
Fig. 8

Phase noise of both beams in free-running and stabilized operation, measured with a signal source analyzer.

Tables (1)

Tables Icon

Table 1 Modelocking parameters of the two pulse trains

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E k (t)=( A k (t)exp( 2πi f center,k t ) )[ n δ( tn 1 f rep,k ) exp( 2πi f CEO,k t ) ]+c.c.,
A k (t)=sech( t τ k ).
E ˜ k (f)= A ˜ k (f f center,k ) n δ( fn f rep,k f CEO,k ) +c.c.,
f center,k = f CEO,k + m k f rep,k .
f rep,2 = f rep,1 +Δ f rep .
I PD = | E 1 (t)+ E 2 (t) | 2 .
S freq =FT( | E 1 (t)+ E 2 (t) | 4 ).
f comb1,center =( f center,2 f center,1 )mod f rep,1 =( ( f CEO,2 + m 2 f rep,2 )( f CEO,1 + m 1 f rep,1 ) )mod f rep,1 =( Δ f CEO +( m 2 m 1 ) f rep,1 + m 2 Δ f rep )mod f rep,1 =( Δ f CEO + m 2 Δ f rep )mod f rep,1

Metrics