Abstract

We present a high power all-fiberized master oscillator power amplifier (MOPA) structured superfluorescent source based on dual-cladding ytterbium-doped fiber. The seed source is a 0.814 W homemade amplified spontaneous emission (ASE) source. Two-stage high power fiber amplifier is utilized to boost the seed power to 1.01 kW with a beam quality of Mx2 = 1.688 and My2 = 1.728. The central wavelength of the output light is 1074.4 nm, and the full width at half maximum (FWHM) linewidth is about 8.1 nm. No self pulsing or relaxation oscillation effect is observed and the power fluctuation is less than 2% in 100 seconds continuous operating. In additional, spectral evolution effects of central-wavelength-drifting and linewidth-narrowing of broadband amplification in high power superfluorescent source system are investigated. To the best of our knowledge, this is the first demonstration of an all-fiberized superfluorescent source with output power exceeding kilowatt.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, and C. K. Hitzenhberger, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  2. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
    [Crossref]
  3. S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
    [Crossref]
  4. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [Crossref] [PubMed]
  5. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  6. M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
    [Crossref]
  7. J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).
  8. P. Wang, J. K. Sahu, and W. A. Clarkson, “110 W double-ended ytterbium-doped fiber superfluorescent source with M2 = 1.6,” Opt. Lett. 31(21), 3116–3118 (2006).
    [Crossref] [PubMed]
  9. P. Wang, J. K. Sahu, and W. A. Clarkson, “High-power broadband ytterbium-doped helical-core fiber superfluorescent source,” IEEE Photon. Technol. Lett. 19(5), 300–302 (2007).
    [Crossref]
  10. P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Opt. Lett. 32(17), 2605–2607 (2007).
    [Crossref] [PubMed]
  11. O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011).
    [Crossref] [PubMed]
  12. W. Chen, D. Shen, T. Zhao, and X. Yang, “High power Er,Yb-doped superfluorescent fiber source with over 16 W output near 1.55 μm,” Opt. Express 20(13), 14542–14546 (2012).
    [Crossref] [PubMed]
  13. D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
    [Crossref] [PubMed]
  14. Q. Xiao, P. Yan, Y. Wang, J. Hao, and M. Gong, “High-power all-fiber superfluorescent source with fused angle-polished side-pumping configuration,” Appl. Opt. 50(8), 1164–1169 (2011).
    [Crossref] [PubMed]
  15. Y. Cao, J. Liu, K. Wang, and P. Wang, “All-fiber hundred-Watt-level broadband ytterbium-doped double-cladding fiber superfluorescent source,” Chin. J. Lasers 39(8), 0802008 (2012).
    [Crossref]

2014 (2)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

2012 (2)

Y. Cao, J. Liu, K. Wang, and P. Wang, “All-fiber hundred-Watt-level broadband ytterbium-doped double-cladding fiber superfluorescent source,” Chin. J. Lasers 39(8), 0802008 (2012).
[Crossref]

W. Chen, D. Shen, T. Zhao, and X. Yang, “High power Er,Yb-doped superfluorescent fiber source with over 16 W output near 1.55 μm,” Opt. Express 20(13), 14542–14546 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (1)

2008 (1)

2007 (2)

P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Opt. Lett. 32(17), 2605–2607 (2007).
[Crossref] [PubMed]

P. Wang, J. K. Sahu, and W. A. Clarkson, “High-power broadband ytterbium-doped helical-core fiber superfluorescent source,” IEEE Photon. Technol. Lett. 19(5), 300–302 (2007).
[Crossref]

2006 (2)

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

P. Wang, J. K. Sahu, and W. A. Clarkson, “110 W double-ended ytterbium-doped fiber superfluorescent source with M2 = 1.6,” Opt. Lett. 31(21), 3116–3118 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

A. F. Fercher, W. Drexler, and C. K. Hitzenhberger, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

1994 (1)

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Cao, Y.

Y. Cao, J. Liu, K. Wang, and P. Wang, “All-fiber hundred-Watt-level broadband ytterbium-doped double-cladding fiber superfluorescent source,” Chin. J. Lasers 39(8), 0802008 (2012).
[Crossref]

Carrasco-Sanz, A.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Chen, W.

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Coen, S.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Corredera, P.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Digonnet, M. J. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, and C. K. Hitzenhberger, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Eberhardt, R.

Fercher, A. F.

A. F. Fercher, W. Drexler, and C. K. Hitzenhberger, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fernandez, H.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Gong, M.

Gonzalez-Herraez, M.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Hao, J.

Hernanz, M. L.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Hitzenhberger, C. K.

A. F. Fercher, W. Drexler, and C. K. Hitzenhberger, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Jeong, Y.

Kim, B. Y.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Kliner, A.

Limpert, J.

Liu, J.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

Y. Cao, J. Liu, K. Wang, and P. Wang, “All-fiber hundred-Watt-level broadband ytterbium-doped double-cladding fiber superfluorescent source,” Chin. J. Lasers 39(8), 0802008 (2012).
[Crossref]

Liu, K.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

Martin-Lopez, S.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Nilsson, J.

Payne, D. N.

Pearson, L.

Rekas, M.

Rhein, S.

Richardson, D. J.

Rothhardt, J.

Sahu, J. K.

Schmidt, O.

Schreiber, T.

Shaw, H. J.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Shen, D.

Shen, D. Y.

Solis, J.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Strecker, M.

Tan, F.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

Tünnermann, A.

Vanholsbeeck, F.

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Wang, K.

Y. Cao, J. Liu, K. Wang, and P. Wang, “All-fiber hundred-Watt-level broadband ytterbium-doped double-cladding fiber superfluorescent source,” Chin. J. Lasers 39(8), 0802008 (2012).
[Crossref]

Wang, P.

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

Y. Cao, J. Liu, K. Wang, and P. Wang, “All-fiber hundred-Watt-level broadband ytterbium-doped double-cladding fiber superfluorescent source,” Chin. J. Lasers 39(8), 0802008 (2012).
[Crossref]

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
[Crossref] [PubMed]

P. Wang and W. A. Clarkson, “High-power, single-mode, linearly polarized, ytterbium-doped fiber superfluorescent source,” Opt. Lett. 32(17), 2605–2607 (2007).
[Crossref] [PubMed]

P. Wang, J. K. Sahu, and W. A. Clarkson, “High-power broadband ytterbium-doped helical-core fiber superfluorescent source,” IEEE Photon. Technol. Lett. 19(5), 300–302 (2007).
[Crossref]

P. Wang, J. K. Sahu, and W. A. Clarkson, “110 W double-ended ytterbium-doped fiber superfluorescent source with M2 = 1.6,” Opt. Lett. 31(21), 3116–3118 (2006).
[Crossref] [PubMed]

Wang, Y.

Wirth, C.

Wysocki, P. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

Xiao, Q.

Yan, P.

Yang, X.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

Zhao, T.

Appl. Opt. (1)

Chin. J. Lasers (1)

Y. Cao, J. Liu, K. Wang, and P. Wang, “All-fiber hundred-Watt-level broadband ytterbium-doped double-cladding fiber superfluorescent source,” Chin. J. Lasers 39(8), 0802008 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

J. Liu, K. Liu, F. Tan, and P. Wang, “High-power thulium-doped all-fiber superfluorescent sources,” IEEE J. Sel. Top. Quantum Electron. 20(5), 3100306 (2014).

IEEE Photon. Technol. Lett. (1)

P. Wang, J. K. Sahu, and W. A. Clarkson, “High-power broadband ytterbium-doped helical-core fiber superfluorescent source,” IEEE Photon. Technol. Lett. 19(5), 300–302 (2007).
[Crossref]

J. Lightwave Technol. (1)

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12(3), 550–567 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, and M. L. Hernanz, “Broadband spectrally flat and high power density flight source for fibre sensing purposes,” Meas. Sci. Technol. 17(5), 1014–1019 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, and C. K. Hitzenhberger, “Optical coherence tomography principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the all-fiberized MOPA structured superfluorescent source.

Fig. 2
Fig. 2

The spectrum of forward output port.

Fig. 3
Fig. 3

Characteristics of the main amplifier (a) Output power and optical-to-optical conversion efficiency versus pump power; (b) Output spectrum; (c) Beam quality measurement; (d) Temporal stability at full power.

Fig. 4
Fig. 4

Spectral evolution (a) Spectrums of pre-amplified light before and after the main stage; (b) Spectral details of the main stage at different power levels; (c) Linewidth and central wavelength as a function of output power.

Metrics