Abstract

In this work, we present the development of low consumption quantum cascade lasers across the mid-IR range. In particular, short cavity single-mode lasers with optimised facet reflectivities have been fabricated from 4.5 to 9.2 μm. Threshold dissipated powers as low as 0.5 W were obtained in continuous wave operation at room temperature. In addition, the beneficial impact of reducing chip length on laser mounting yield is discussed. High power single-mode lasers from the same processed wafers are also presented.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High power and single mode quantum cascade lasers

Alfredo Bismuto, Yves Bidaux, Stéphane Blaser, Romain Terazzi, Tobias Gresch, Michel Rochat, Antoine Muller, Christopher Bonzon, and Jerome Faist
Opt. Express 24(10) 10694-10699 (2016)

3.36 µm single-mode quantum cascade laser with a dissipation below 250 mW

Johanna M. Wolf, Sabine Riedi, Martin J. Süess, Mattias Beck, and Jérôme Faist
Opt. Express 24(1) 662-671 (2016)

Quantum cascade lasers: from tool to product

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken
Opt. Express 23(7) 8462-8475 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
    [Crossref] [PubMed]
  2. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
    [Crossref]
  3. B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
    [Crossref]
  4. F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
    [Crossref]
  5. R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
    [Crossref]
  6. J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
    [Crossref]

2014 (1)

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

2012 (2)

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

2011 (1)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

2002 (1)

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Aellen, T.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Beck, M.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Bismuto, A.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

Blaser, S.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Bonetti, Y.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

Borgentun, C. E.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Briggs, R. M.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Caneau, C. G.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Coleman, S.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Faist, J.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Forouhar, S.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Frez, C.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Hinkov, B.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

Hofstetter, D.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Hughes, L. C.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

LeBlanc, H. P.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Rochat, M.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Visovsky, N. J.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Xie, F.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Zah, C.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Appl. Phys. Lett. (2)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Electronics Letters (1)

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SEM picture of a narrow ridge device.

Fig. 2
Fig. 2

Right axis: failure probability as function of the laser length for a 3.5 μm-wide laser. Left axis: number of lasers available for a 2 inch wafer.

Fig. 3
Fig. 3

Light-Voltage-Current characteristics of a 750 μm-long, 2.5 μm-wide DFB laser emitting at 4.5 μm. The curves are shown before (in red) and after (in blue) the front dielectric coating. Curves of the device before back-facet HR coating are not shown since no lasing action was observed. In both cases, laser emission is single mode across the whole range.

Fig. 4
Fig. 4

Selected spectra of the low dissipation devices fabricated in the framework of the present work. Electrical power dissipations at threshold for -30C are shown as red markers and at room temperature as orange markers. Roll-over dissipations are shown as black markers.

Fig. 5
Fig. 5

Left: Light-Voltage-Current characteristics as a function of the temperature for a 750 μm-long, 3.5 μm-wide DFB laser emitting at 4.50 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Fig. 6
Fig. 6

Left: Light-Voltage-Current characteristics as a function of the temperature for a 750 μm-long, 6.6μm-wide DFB laser emitting at 5.26 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Fig. 7
Fig. 7

Left: Light-Voltage-Current characteristics as a function of the temperature for a 750 μm-long, 10.5μm-wide DFB laser emitting at 7.82 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Fig. 8
Fig. 8

Left: Light-Voltage-Current characteristics as function of the temperature for 1 mm-long, 12.4μm-wide DFB laser emitting at 8.40 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Fig. 9
Fig. 9

Left: Light-Voltage-Current characteristics as a function of the temperature for a 2.25 mm-long, 8.5 μm-wide DFB laser emitting at 4.57 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Fig. 10
Fig. 10

Left: Light-Voltage-Current characteristics as a function of the temperature for a 2.25 mm-long, 10 μm-wide DFB laser emitting at 7.72 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P = k = 1 n λ k e k k !

Metrics