Abstract

In this work, we present the development of low consumption quantum cascade lasers across the mid-IR range. In particular, short cavity single-mode lasers with optimised facet reflectivities have been fabricated from 4.5 to 9.2 μm. Threshold dissipated powers as low as 0.5 W were obtained in continuous wave operation at room temperature. In addition, the beneficial impact of reducing chip length on laser mounting yield is discussed. High power single-mode lasers from the same processed wafers are also presented.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
    [Crossref] [PubMed]
  2. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
    [Crossref]
  3. B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
    [Crossref]
  4. F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
    [Crossref]
  5. R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
    [Crossref]
  6. J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
    [Crossref]

2014 (1)

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

2012 (2)

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

2011 (1)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

2002 (1)

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Aellen, T.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Beck, M.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Bismuto, A.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

Blaser, S.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Bonetti, Y.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

Borgentun, C. E.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Briggs, R. M.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Caneau, C. G.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Coleman, S.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Faist, J.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Forouhar, S.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Frez, C.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Hinkov, B.

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

Hofstetter, D.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Hughes, L. C.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

LeBlanc, H. P.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Rochat, M.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Visovsky, N. J.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Xie, F.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Zah, C.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

Appl. Phys. Lett. (2)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Electronics Letters (1)

B. Hinkov, A. Bismuto, Y. Bonetti, M. Beck, S. Blaser, and J. Faist, “Singlemode quantum cascade lasers with power dissipation below 1 W,” Electronics Letters 48(11), 646–647 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “Room Temperature CW Operation of Mid-IR Distributed Feedback Quantum Cascade Lasers for CO2, N2O, and NO Gas Sensing,” IEEE J. Quantum Electron. 18, (5), 1605 (2012).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38 (6), 533 (2002).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553 (1994).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SEM picture of a narrow ridge device.

Fig. 2
Fig. 2

Right axis: failure probability as function of the laser length for a 3.5 μm-wide laser. Left axis: number of lasers available for a 2 inch wafer.

Fig. 3
Fig. 3

Light-Voltage-Current characteristics of a 750 μm-long, 2.5 μm-wide DFB laser emitting at 4.5 μm. The curves are shown before (in red) and after (in blue) the front dielectric coating. Curves of the device before back-facet HR coating are not shown since no lasing action was observed. In both cases, laser emission is single mode across the whole range.

Fig. 4
Fig. 4

Selected spectra of the low dissipation devices fabricated in the framework of the present work. Electrical power dissipations at threshold for -30C are shown as red markers and at room temperature as orange markers. Roll-over dissipations are shown as black markers.

Fig. 5
Fig. 5

Left: Light-Voltage-Current characteristics as a function of the temperature for a 750 μm-long, 3.5 μm-wide DFB laser emitting at 4.50 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Fig. 6
Fig. 6

Left: Light-Voltage-Current characteristics as a function of the temperature for a 750 μm-long, 6.6μm-wide DFB laser emitting at 5.26 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Fig. 7
Fig. 7

Left: Light-Voltage-Current characteristics as a function of the temperature for a 750 μm-long, 10.5μm-wide DFB laser emitting at 7.82 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Fig. 8
Fig. 8

Left: Light-Voltage-Current characteristics as function of the temperature for 1 mm-long, 12.4μm-wide DFB laser emitting at 8.40 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Fig. 9
Fig. 9

Left: Light-Voltage-Current characteristics as a function of the temperature for a 2.25 mm-long, 8.5 μm-wide DFB laser emitting at 4.57 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Fig. 10
Fig. 10

Left: Light-Voltage-Current characteristics as a function of the temperature for a 2.25 mm-long, 10 μm-wide DFB laser emitting at 7.72 μm. Right: Optical power vs electrical power dissipation. In the inset, some spectra are shown at different submount temperatures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P = k = 1 n λ k e k k !

Metrics