Abstract

Abstract: Two-dimensional matrix of subwavelength dot structures are directly generated on molybdenum surfaces by focusing two-color femtosecond laser pulses through an optical lens. In contrast to the traditional fabrication approaches, the spatial periodicities of such surface structures are demonstrated to rely on the time delay of two laser beams through transient correlation between their ultrafast dynamic processes, in spite of their different colors and polarizations. The structure orientations can be tuned effectively via the laser polarization. Discussion suggests a new possible flexible way towards the nanoscale sophisticated material processing for many potential applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct fabricating large-area nanotriangle structure arrays on tungsten surface by nonlinear lithography of two femtosecond laser beams

Qi Liu, Nan Zhang, Jianjun Yang, Hongzhen Qiao, and Chunlei Guo
Opt. Express 26(9) 11718-11727 (2018)

Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation

Sandra Höhm, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(20) 25959-25971 (2015)

Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation

Sandra Höhm, Marcel Herzlieb, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(1) 61-71 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  3. H. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
    [Crossref]
  4. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [Crossref]
  5. F. Reif, M. Costache, Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
    [Crossref]
  6. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
    [Crossref]
  7. A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
    [Crossref]
  8. Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
    [Crossref]
  9. G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
    [Crossref]
  10. M. Tang, H. Zhang, and T. Her, “Self-assembly of tunable and highly uniform tungsten nano gratings induced by a femtosecond laser with nano joule energy,” Nanotechnology 18(48), 485304 (2007).
    [Crossref]
  11. N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
    [Crossref]
  12. Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
    [Crossref] [PubMed]
  13. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [Crossref] [PubMed]
  14. Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express 17(23), 21124–21133 (2009).
    [PubMed]
  15. J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, and P. Simon, “Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds,” Appl. Phys., A Mater. Sci. Process. 99(4), 691–695 (2010).
    [Crossref]
  16. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
    [Crossref]
  17. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
    [Crossref]
  18. T. Wang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
    [Crossref]
  19. J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
    [Crossref]
  20. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
    [Crossref]
  21. T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
    [Crossref]
  22. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modification with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
    [Crossref]
  23. I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
    [Crossref]
  24. H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14(17), 7943–7953 (2006).
    [Crossref] [PubMed]
  25. M. Kirillova, L. Nomerovannaya, and M. Noskov, “Properties of molybdenum single crystals,” Sov. Phys. JETP 33(6), 1210–1214 (1971).
  26. S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
    [Crossref]
  27. Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
    [Crossref] [PubMed]
  28. Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulse ablation of Cr film on glass,” Opt. Commun. 281(18), 4723–4726 (2008).
    [Crossref]
  29. M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Annalen Der Physic. 525(1-2), 74–86 (2013).
    [Crossref]

2014 (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

2013 (2)

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Annalen Der Physic. 525(1-2), 74–86 (2013).
[Crossref]

2010 (5)

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

T. Wang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modification with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, and P. Simon, “Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds,” Appl. Phys., A Mater. Sci. Process. 99(4), 691–695 (2010).
[Crossref]

2009 (4)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Y. Yang, J. Yang, C. Liang, H. Wang, X. Zhu, and N. Zhang, “Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility,” Opt. Express 17(23), 21124–21133 (2009).
[PubMed]

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

2008 (5)

Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulse ablation of Cr film on glass,” Opt. Commun. 281(18), 4723–4726 (2008).
[Crossref]

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
[Crossref] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

2007 (2)

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[Crossref]

M. Tang, H. Zhang, and T. Her, “Self-assembly of tunable and highly uniform tungsten nano gratings induced by a femtosecond laser with nano joule energy,” Nanotechnology 18(48), 485304 (2007).
[Crossref]

2006 (1)

2005 (3)

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

2002 (1)

F. Reif, M. Costache, Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

2001 (1)

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

1982 (1)

H. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
[Crossref]

1971 (1)

M. Kirillova, L. Nomerovannaya, and M. Noskov, “Properties of molybdenum single crystals,” Sov. Phys. JETP 33(6), 1210–1214 (1971).

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartoli, F. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Bekesi, J.

J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, and P. Simon, “Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds,” Appl. Phys., A Mater. Sci. Process. 99(4), 691–695 (2010).
[Crossref]

Bonse, J.

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Buividas, R.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Chen, H.

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Cheng, Y.

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Annalen Der Physic. 525(1-2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

Costache, F.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Costache, M.

F. Reif, M. Costache, Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

Dai, E.

Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulse ablation of Cr film on glass,” Opt. Commun. 281(18), 4723–4726 (2008).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ding, Y. J.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Divliansky, I. B.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Gan, Q.

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Guo, C.

T. Wang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

Guo, Y.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Han, Z.

Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulse ablation of Cr film on glass,” Opt. Commun. 281(18), 4723–4726 (2008).
[Crossref]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

He, X.

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Henyk,

F. Reif, M. Costache, Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

Her, T.

M. Tang, H. Zhang, and T. Her, “Self-assembly of tunable and highly uniform tungsten nano gratings induced by a femtosecond laser with nano joule energy,” Nanotechnology 18(48), 485304 (2007).
[Crossref]

Höhm, S.

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

Huang, M.

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Annalen Der Physic. 525(1-2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Huo, H.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modification with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[Crossref]

Ihlemann, J.

J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, and P. Simon, “Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds,” Appl. Phys., A Mater. Sci. Process. 99(4), 691–695 (2010).
[Crossref]

Jia, T.

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Johnson, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modification with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[Crossref]

Juodkazis, S.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, “Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14(17), 7943–7953 (2006).
[Crossref] [PubMed]

Kaakkunen, J.

J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, and P. Simon, “Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds,” Appl. Phys., A Mater. Sci. Process. 99(4), 691–695 (2010).
[Crossref]

Keating, C. D.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Khoo, I.-C.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Kirillova, M.

M. Kirillova, L. Nomerovannaya, and M. Noskov, “Properties of molybdenum single crystals,” Sov. Phys. JETP 33(6), 1210–1214 (1971).

Kiuchi, J.

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
[Crossref]

Klaiber, F.

J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, and P. Simon, “Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds,” Appl. Phys., A Mater. Sci. Process. 99(4), 691–695 (2010).
[Crossref]

Kondo, T.

Kruger, J.

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

Krüger, J.

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

Kuroda, H.

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Li, R.

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Liang, C.

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Mallouk, T. E.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Matsuo, S.

Mayer, T. S.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Mazur, E.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modification with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[Crossref]

Michaeli, W.

J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, and P. Simon, “Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds,” Appl. Phys., A Mater. Sci. Process. 99(4), 691–695 (2010).
[Crossref]

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Misawa, H.

Miyaji, G.

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[Crossref]

Miyazaki, K.

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[Crossref]

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
[Crossref]

Mizeikis, V.

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Nishimura, S.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Nomerovannaya, L.

M. Kirillova, L. Nomerovannaya, and M. Noskov, “Properties of molybdenum single crystals,” Sov. Phys. JETP 33(6), 1210–1214 (1971).

Noskov, M.

M. Kirillova, L. Nomerovannaya, and M. Noskov, “Properties of molybdenum single crystals,” Sov. Phys. JETP 33(6), 1210–1214 (1971).

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Pandelov, S. V.

F. Reif, M. Costache, Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

Pena, D.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Qiu, J.

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Reif, F.

F. Reif, M. Costache, Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

Reif, J.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Rosenfeld, A.

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

Schoengart, M.

J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, and P. Simon, “Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds,” Appl. Phys., A Mater. Sci. Process. 99(4), 691–695 (2010).
[Crossref]

Shen, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modification with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[Crossref]

Shishido, A.

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

Simon, P.

J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, and P. Simon, “Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds,” Appl. Phys., A Mater. Sci. Process. 99(4), 691–695 (2010).
[Crossref]

Sipe, J. E.

H. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
[Crossref]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

Tang, M.

M. Tang, H. Zhang, and T. Her, “Self-assembly of tunable and highly uniform tungsten nano gratings induced by a femtosecond laser with nano joule energy,” Nanotechnology 18(48), 485304 (2007).
[Crossref]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

van Driel, H.

H. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
[Crossref]

Varlamova, O.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

Wang, C.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modification with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[Crossref]

Wang, H.

Wang, T.

T. Wang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

Xie, J.

Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulse ablation of Cr film on glass,” Opt. Commun. 281(18), 4723–4726 (2008).
[Crossref]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

Xu, Z.

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Annalen Der Physic. 525(1-2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Xue, L.

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

Yang, J.

Yang, Y.

Yasumaru, N.

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
[Crossref]

Young, J. F.

H. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
[Crossref]

Zhang, H.

M. Tang, H. Zhang, and T. Her, “Self-assembly of tunable and highly uniform tungsten nano gratings induced by a femtosecond laser with nano joule energy,” Nanotechnology 18(48), 485304 (2007).
[Crossref]

Zhang, J.

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhang, N.

Zhao, F.

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Annalen Der Physic. 525(1-2), 74–86 (2013).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Zhou, C.

Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulse ablation of Cr film on glass,” Opt. Commun. 281(18), 4723–4726 (2008).
[Crossref]

Zhu, X.

Annalen Der Physic. (1)

M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Annalen Der Physic. 525(1-2), 74–86 (2013).
[Crossref]

Appl. Phys. Lett. (5)

I. B. Divliansky, A. Shishido, I.-C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating, and T. E. Mallouk, “Fabrication of two-dimensional photonic crystal using interference lithography and electrodeposition of CdSe,” Appl. Phys. Lett. 79(21), 3392–3394 (2001).
[Crossref]

S. Höhm, A. Rosenfeld, J. Kruger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102(5), 054102 (2013).
[Crossref]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[Crossref]

Y. Yang, J. Yang, L. Xue, and Y. Guo, “Surface patterning on periodicity of femtosecond laser- induced ripples,” Appl. Phys. Lett. 97(14), 141101 (2010).
[Crossref]

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

N. Yasumaru, K. Miyazaki, and J. Kiuchi, “Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN,” Appl. Phys., A Mater. Sci. Process. 81(5), 933–937 (2005).
[Crossref]

J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, J. Ihlemann, and P. Simon, “Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds,” Appl. Phys., A Mater. Sci. Process. 99(4), 691–695 (2010).
[Crossref]

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys., A Mater. Sci. Process. 92(4), 1019–1024 (2008).
[Crossref]

Appl. Surf. Sci. (1)

F. Reif, M. Costache, Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (4)

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[Crossref]

A. Y. Vorobyev and C. Guo, “Femtosecond laser-induced periodic surface structure formation on tungsten,” J. Appl. Phys. 104(6), 063523 (2008).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108(3), 034903 (2010).
[Crossref]

T. Wang and C. Guo, “Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals,” J. Appl. Phys. 108(7), 073523 (2010).
[Crossref]

Nanotechnology (2)

M. Tang, H. Zhang, and T. Her, “Self-assembly of tunable and highly uniform tungsten nano gratings induced by a femtosecond laser with nano joule energy,” Nanotechnology 18(48), 485304 (2007).
[Crossref]

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modification with femtosecond laser pulse irradiations,” Nanotechnology 21(7), 075304 (2010).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Han, C. Zhou, E. Dai, and J. Xie, “Ultrafast double pulse ablation of Cr film on glass,” Opt. Commun. 281(18), 4723–4726 (2008).
[Crossref]

Opt. Express (3)

Phys. Rev. B (2)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[Crossref]

T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72(12), 125429 (2005).
[Crossref]

Phys. Rev. Lett. (3)

Q. Gan, Y. J. Ding, and F. J. Bartoli, ““Rainbow” trapping and releasing at telecommunication wavelengths,” Phys. Rev. Lett. 102(5), 056801 (2009).
[Crossref] [PubMed]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

H. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49(26), 1955–1958 (1982).
[Crossref]

Prog. Quantum Electron. (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Sov. Phys. JETP (1)

M. Kirillova, L. Nomerovannaya, and M. Noskov, “Properties of molybdenum single crystals,” Sov. Phys. JETP 33(6), 1210–1214 (1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schemes of the experimental setup for fabricating dot-matrix structures on the metal surfaces. (a) By direct irradiating collinear two-color femtosecond laser beams; (b) By irradiating temporally delayed collinear two-color femtosecond laser beams.
Fig. 2
Fig. 2 (a)-(b) SEM images of the subwavelength dot-matrix structures on Mo surfaces by direct irradiating collinear two-color femtosecond laser beams at energy fluences of F = 0.071 J/cm2 and F = 0.039 J/cm2, respectively; (c) 2D Fourier transformation of SEM image in Fig. 2(a).
Fig. 3
Fig. 3 Measured scanning speed dependence of the matrix structure periodicities in two dimensions at the given laser fluence of F = 0.07 J/cm2. (a) In the vertical direction; (b) In the horizontal direction. Each data was obtained from three different positions of each SEM image and then averaged over two experiments, and the error bars represent statistical fluctuations during the measurements.
Fig. 4
Fig. 4 (a)–(b) Slantwise oriented dot-matrix surface structures at two-color laser fluence of F = 0.07 J/cm2 when the azimuth angle of BBO crystal is θ = −25° and θ = 35°, respectively; (c) Measured slantwise angles of two orientations for the matrix surface structures as a function of rotating BBO crystal.
Fig. 5
Fig. 5 (a)–(b) SEM images of surface structure induced by two individual femtosecond laser beams centered at wavelength of 400 nm and 800 nm, respectively; (c)–(d) Surface structures obtained by scanning of partially overlapped two-color laser spots in either upward or downward direction, respectively. In the inset pictures, red and blue spots represent femtosecond laser beams centered at 800 nm and 400 nm wavelengths, respectively. S and E respectively indicate the directions of the laser scanning and the laser electric field.
Fig. 6
Fig. 6 Variable surface structures induced by two-color femtosecond laser pulses with different delay times (here positive delay times represent the arrival of the IR laser pulse prior to the blue laser pulse, and the sample scanning is along the horizontal direction).
Fig. 7
Fig. 7 Measured variations of the periodicity in two dimensions as a function of the delay time between two-color laser beams. (a) In the vertical direction; (b) In the horizontal direction.
Fig. 8
Fig. 8 Observed dynamic coalescence of the prior ripple structure under the irradiation of femtosecond laser beam with different delay times. (a) ∆t = −15 ps; (b) ∆t = −30 ps. The horizontally oriented ripple structures are generated by the prior incident blue femtosecond laser beam, and the vertically orientated ripple structures are generated by the delayed incident IR femtosecond laser beam. (c) The sketch of intensity distribution of the temporally delayed incident femtosecond laser beam in space along the vertical direction.

Metrics