Abstract

Recently, the concept of metasurface has provided one an unprecedented opportunity and ability to control the light in the deep subwavelength scale. However, so far most efforts are devoted to exploiting the novel scattering properties and applications of metasurface in optics. Here, I theoretically and numerically demonstrate that longitudinal and transverse photoinduced voltages can be simultaneously realized in the proposed metasurface utilizing the magnetic resonance under the normal incidence of circularly polarized light, which may extend the concept and functionality of metasurface into the electronics and may provide a potential scheme to realize a nanoscale tunable voltage source through a nanophotonic roadmap. The signs of longitudinal and transverse photoin-duced voltages can be manipulated by tuning the resonant frequency and the handedness of circularly polarized light, respectively. Analytical formulae of photoinduced voltage are presented based on the theory of symmetry of field. This work may bridge nanophotonics and electronics, expands the capability of metasurface and has many potential applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of transverse photo-induced voltage in plasmonic metasurfaces of triangle holes

Marjan Akbari, Jie Gao, and Xiaodong Yang
Opt. Express 26(16) 21194-21203 (2018)

Control of photo-induced voltages in plasmonic crystals via spin-orbit interactions

Nicholas V. Proscia, Matthew Moocarme, Roger Chang, Ilona Kretzschmar, Vinod M. Menon, and Luat T. Vuong
Opt. Express 24(10) 10402-10411 (2016)

Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption

Dong Xiao, Yan Jun Liu, Shengtao Yin, Jianxun Liu, Wei Ji, Bing Wang, Dan Luo, Guixin Li, and Xiao Wei Sun
Opt. Express 26(19) 25305-25314 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Barlow, “The Hall effect and its application to microwave power measurement,” Proc. IRE 46, 1411–1413 (1958).
    [Crossref]
  2. A. F. Gibson, M. F. Kimmitt, and A. C. Walker, “Photon drag in germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
    [Crossref]
  3. T. S. Moss, “Photon pressure effects in semiconductors,” Phys. Status Solidi A 8, 223–232 (1971).
    [Crossref]
  4. G. Ribakovs and A. A. Gundjian, “Photon drag and other emfs induced in tellurium by a TEA CO2 laser,” Appl. Phys. Lett. 24, 377–379 (1974).
    [Crossref]
  5. V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
    [Crossref] [PubMed]
  6. V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993).
    [Crossref]
  7. V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B 53, 11388–11402 (1996).
    [Crossref]
  8. J. E. Goff and W. L. Schaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
    [Crossref]
  9. J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61, 10471–10477 (2000).
    [Crossref]
  10. A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87, 091118 (2005).
    [Crossref]
  11. M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
    [Crossref] [PubMed]
  12. T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
    [Crossref] [PubMed]
  13. A. English, C.-W. Cheng, L. LoweII, M.-H. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).
    [Crossref]
  14. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
    [Crossref]
  15. H. Kurosawa, T. Ishihara, N. Ikeda, D. Tsuya, M. Ochiai, and Y. Sugimoto, “Optical rectification effect due to surface plasmon polaritons at normal incidence in a nondiffraction regime,” Opt. Lett. 37, 2793–2795 (2012).
    [Crossref] [PubMed]
  16. H. Kurosawa and T. Ishihara, “Surface plasmon drag effect in a dielectrically modulated metallic thin film,” Opt. Express 20, 1561–1574 (2012).
    [Crossref] [PubMed]
  17. N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
    [Crossref]
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  19. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  20. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic clock at microwave frequencies,” Science 314, 977–980 (2006).
    [Crossref] [PubMed]
  21. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [Crossref] [PubMed]
  22. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  23. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref] [PubMed]
  24. J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
    [Crossref] [PubMed]
  25. Q. Bai, J. Chen, C. Liu, J. Xu, C. Cheng, N.-H. Shen, and H.-T. Wang, “Polarization splitter of surface polaritons,” Phys. Rev. B 79, 155401 (2009).
    [Crossref]
  26. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
    [Crossref] [PubMed]
  27. Q. Bai, J. Chen, N.-H. Shen, C. Cheng, and H.-T. Wang, “Controllable optical black hole in left-handed materials,” Opt. Express 18, 2106–2115 (2010).
    [Crossref] [PubMed]
  28. P. B. Catrysse and S. Fan, “Transverse electromagnetic modes in aperture waveguides containing a metamaterial with extreme anisotropy,” Phys. Rev. Lett. 106, 223902 (2011).
    [Crossref] [PubMed]
  29. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
    [Crossref]
  30. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  31. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
    [Crossref]
  32. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
    [Crossref] [PubMed]
  33. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
    [Crossref] [PubMed]
  34. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
    [Crossref]
  35. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
    [Crossref] [PubMed]
  36. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  37. L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  38. W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
    [Crossref]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  40. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).

2014 (2)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

2013 (5)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

2012 (5)

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

H. Kurosawa, T. Ishihara, N. Ikeda, D. Tsuya, M. Ochiai, and Y. Sugimoto, “Optical rectification effect due to surface plasmon polaritons at normal incidence in a nondiffraction regime,” Opt. Lett. 37, 2793–2795 (2012).
[Crossref] [PubMed]

H. Kurosawa and T. Ishihara, “Surface plasmon drag effect in a dielectrically modulated metallic thin film,” Opt. Express 20, 1561–1574 (2012).
[Crossref] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

2011 (4)

A. English, C.-W. Cheng, L. LoweII, M.-H. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).
[Crossref]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

P. B. Catrysse and S. Fan, “Transverse electromagnetic modes in aperture waveguides containing a metamaterial with extreme anisotropy,” Phys. Rev. Lett. 106, 223902 (2011).
[Crossref] [PubMed]

2010 (2)

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref] [PubMed]

Q. Bai, J. Chen, N.-H. Shen, C. Cheng, and H.-T. Wang, “Controllable optical black hole in left-handed materials,” Opt. Express 18, 2106–2115 (2010).
[Crossref] [PubMed]

2009 (4)

J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[Crossref] [PubMed]

Q. Bai, J. Chen, C. Liu, J. Xu, C. Cheng, N.-H. Shen, and H.-T. Wang, “Polarization splitter of surface polaritons,” Phys. Rev. B 79, 155401 (2009).
[Crossref]

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
[Crossref] [PubMed]

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic clock at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref] [PubMed]

2005 (1)

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87, 091118 (2005).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61, 10471–10477 (2000).
[Crossref]

1997 (1)

J. E. Goff and W. L. Schaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[Crossref]

1996 (1)

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B 53, 11388–11402 (1996).
[Crossref]

1993 (1)

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993).
[Crossref]

1992 (1)

V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
[Crossref] [PubMed]

1974 (1)

G. Ribakovs and A. A. Gundjian, “Photon drag and other emfs induced in tellurium by a TEA CO2 laser,” Appl. Phys. Lett. 24, 377–379 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1971 (1)

T. S. Moss, “Photon pressure effects in semiconductors,” Phys. Status Solidi A 8, 223–232 (1971).
[Crossref]

1970 (1)

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, “Photon drag in germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
[Crossref]

1958 (1)

H. M. Barlow, “The Hall effect and its application to microwave power measurement,” Proc. IRE 46, 1411–1413 (1958).
[Crossref]

Aieta, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Alekseyev, L. V.

Bai, B.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Bai, Q.

Q. Bai, J. Chen, N.-H. Shen, C. Cheng, and H.-T. Wang, “Controllable optical black hole in left-handed materials,” Opt. Express 18, 2106–2115 (2010).
[Crossref] [PubMed]

Q. Bai, J. Chen, C. Liu, J. Xu, C. Cheng, N.-H. Shen, and H.-T. Wang, “Polarization splitter of surface polaritons,” Phys. Rev. B 79, 155401 (2009).
[Crossref]

Barlow, H. M.

H. M. Barlow, “The Hall effect and its application to microwave power measurement,” Proc. IRE 46, 1411–1413 (1958).
[Crossref]

Bezares, F. J.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

Blanchard, R.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Caldwell, J. D.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

Capasso, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Transverse electromagnetic modes in aperture waveguides containing a metamaterial with extreme anisotropy,” Phys. Rev. Lett. 106, 223902 (2011).
[Crossref] [PubMed]

Cheah, K.-W.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, J.

Q. Bai, J. Chen, N.-H. Shen, C. Cheng, and H.-T. Wang, “Controllable optical black hole in left-handed materials,” Opt. Express 18, 2106–2115 (2010).
[Crossref] [PubMed]

Q. Bai, J. Chen, C. Liu, J. Xu, C. Cheng, N.-H. Shen, and H.-T. Wang, “Polarization splitter of surface polaritons,” Phys. Rev. B 79, 155401 (2009).
[Crossref]

Chen, S.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, W. T.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Chen, X.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Cheng, C.

Q. Bai, J. Chen, N.-H. Shen, C. Cheng, and H.-T. Wang, “Controllable optical black hole in left-handed materials,” Opt. Express 18, 2106–2115 (2010).
[Crossref] [PubMed]

Q. Bai, J. Chen, C. Liu, J. Xu, C. Cheng, N.-H. Shen, and H.-T. Wang, “Polarization splitter of surface polaritons,” Phys. Rev. B 79, 155401 (2009).
[Crossref]

Cheng, C.-W.

A. English, C.-W. Cheng, L. LoweII, M.-H. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).
[Crossref]

Chiang, I-D.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic clock at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Douketis, C.

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B 53, 11388–11402 (1996).
[Crossref]

Durach, M.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
[Crossref] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Engheta, N.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

English, A.

A. English, C.-W. Cheng, L. LoweII, M.-H. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).
[Crossref]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Fan, S.

P. B. Catrysse and S. Fan, “Transverse electromagnetic modes in aperture waveguides containing a metamaterial with extreme anisotropy,” Phys. Rev. Lett. 106, 223902 (2011).
[Crossref] [PubMed]

J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[Crossref] [PubMed]

Fedotov, V. A.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref] [PubMed]

Gaburro, Z.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Gibson, A. F.

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, “Photon drag in germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
[Crossref]

Gippius, N. A.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

Goff, J. E.

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61, 10471–10477 (2000).
[Crossref]

J. E. Goff and W. L. Schaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[Crossref]

Gu, L.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[Crossref]

Gundjian, A. A.

G. Ribakovs and A. A. Gundjian, “Photon drag and other emfs induced in tellurium by a TEA CO2 laser,” Appl. Phys. Lett. 24, 377–379 (1974).
[Crossref]

Guo, G.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Gurevich, V. L.

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993).
[Crossref]

V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
[Crossref] [PubMed]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Hatano, T.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

He, Q.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Hsu, W.-L.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Huang, Y.-W.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Ikeda, N.

Ishihara, T.

H. Kurosawa, T. Ishihara, N. Ikeda, D. Tsuya, M. Ochiai, and Y. Sugimoto, “Optical rectification effect due to surface plasmon polaritons at normal incidence in a nondiffraction regime,” Opt. Lett. 37, 2793–2795 (2012).
[Crossref] [PubMed]

H. Kurosawa and T. Ishihara, “Surface plasmon drag effect in a dielectrically modulated metallic thin film,” Opt. Express 20, 1561–1574 (2012).
[Crossref] [PubMed]

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87, 091118 (2005).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).

Jacob, Z.

Jin, G.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Juan, T.-K.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic clock at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Kaelberer, T.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref] [PubMed]

Kats, M. A.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Kimmitt, M. F.

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, “Photon drag in germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
[Crossref]

Kuang, W.

A. English, C.-W. Cheng, L. LoweII, M.-H. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).
[Crossref]

Kung, W.-T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Kurosawa, H.

Laiho, R.

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993).
[Crossref]

V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Lashkul, A. V.

V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
[Crossref] [PubMed]

Li, J.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Liao, C. Y.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Lin, H. T.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Lin, J.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Liu, A. Q.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Liu, C.

Q. Bai, J. Chen, C. Liu, J. Xu, C. Cheng, N.-H. Shen, and H.-T. Wang, “Polarization splitter of surface polaritons,” Phys. Rev. B 79, 155401 (2009).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

LoweII, L.

A. English, C.-W. Cheng, L. LoweII, M.-H. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Mhlenbernd, H.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic clock at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Moskovits, M.

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B 53, 11388–11402 (1996).
[Crossref]

Moss, T. S.

T. S. Moss, “Photon pressure effects in semiconductors,” Phys. Status Solidi A 8, 223–232 (1971).
[Crossref]

Narimanov, E.

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Noginov, M. A.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[Crossref]

Noginova, N.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[Crossref]

Ochiai, M.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Papasimakis, N.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref] [PubMed]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic clock at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

Qiu, C.-W.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

Ribakovs, G.

G. Ribakovs and A. A. Gundjian, “Photon drag and other emfs induced in tellurium by a TEA CO2 laser,” Appl. Phys. Lett. 24, 377–379 (1974).
[Crossref]

Rono, V.

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

Rusina, A.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Schaich, W. L.

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61, 10471–10477 (2000).
[Crossref]

J. E. Goff and W. L. Schaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic clock at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Scully, M. O.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Shalaev, V. M.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B 53, 11388–11402 (1996).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Shen, J.-T.

J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[Crossref] [PubMed]

Shen, N.-H.

Q. Bai, J. Chen, N.-H. Shen, C. Cheng, and H.-T. Wang, “Controllable optical black hole in left-handed materials,” Opt. Express 18, 2106–2115 (2010).
[Crossref] [PubMed]

Q. Bai, J. Chen, C. Liu, J. Xu, C. Cheng, N.-H. Shen, and H.-T. Wang, “Polarization splitter of surface polaritons,” Phys. Rev. B 79, 155401 (2009).
[Crossref]

Shih, M.-H.

A. English, C.-W. Cheng, L. LoweII, M.-H. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).
[Crossref]

Shin, J.

J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic clock at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Soimo, J.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic clock at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Stockman, M. I.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
[Crossref] [PubMed]

Stuckless, J. T.

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B 53, 11388–11402 (1996).
[Crossref]

Sugimoto, Y.

Sun, G.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Sun, S.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Tan, Q.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Tikhodeev, S. G.

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

Tsai, D. P.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref] [PubMed]

Tsuya, D.

Vengurlekar, A. S.

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87, 091118 (2005).
[Crossref]

Walker, A. C.

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, “Photon drag in germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
[Crossref]

Wang, C.-M.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Wang, H.-T.

Q. Bai, J. Chen, N.-H. Shen, C. Cheng, and H.-T. Wang, “Controllable optical black hole in left-handed materials,” Opt. Express 18, 2106–2115 (2010).
[Crossref] [PubMed]

Q. Bai, J. Chen, C. Liu, J. Xu, C. Cheng, N.-H. Shen, and H.-T. Wang, “Polarization splitter of surface polaritons,” Phys. Rev. B 79, 155401 (2009).
[Crossref]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Xiao, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Xu, J.

Q. Bai, J. Chen, C. Liu, J. Xu, C. Cheng, N.-H. Shen, and H.-T. Wang, “Polarization splitter of surface polaritons,” Phys. Rev. B 79, 155401 (2009).
[Crossref]

Yakim, A. V.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[Crossref]

Yang, K.-Y.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

Yu, N.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Zentgraf, T.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, H.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, S.

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Zhang, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref] [PubMed]

Zhou, L.

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

A. F. Gibson, M. F. Kimmitt, and A. C. Walker, “Photon drag in germanium,” Appl. Phys. Lett. 17, 75–77 (1970).
[Crossref]

G. Ribakovs and A. A. Gundjian, “Photon drag and other emfs induced in tellurium by a TEA CO2 laser,” Appl. Phys. Lett. 24, 377–379 (1974).
[Crossref]

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” Appl. Phys. Lett. 87, 091118 (2005).
[Crossref]

A. English, C.-W. Cheng, L. LoweII, M.-H. Shih, and W. Kuang, “Hydrodynamic modeling of surface plasmon enhanced photon induced current in a gold grating,” Appl. Phys. Lett. 98, 191113 (2011).
[Crossref]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101 (2012).
[Crossref]

Nano Lett. (2)

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient metasurfaces,” Nano Lett. 12, 6223–6229 (2012).
[Crossref] [PubMed]

W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14, 225–230 (2014).
[Crossref]

Nat. Commun. (2)

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

L. Huang, X. Chen, H. Mhlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Nat. Photonics (1)

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7, 907–912 (2013).
[Crossref]

New J. Phys. (1)

N. Noginova, V. Rono, F. J. Bezares, and J. D. Caldwell, “Plasmon drag effect in metal nanostructures,” New J. Phys. 15, 113061 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (7)

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B 84, 035447 (2011).
[Crossref]

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B 48, 8307–8316 (1993).
[Crossref]

V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, “Light-induced kinetic effects in solids,” Phys. Rev. B 53, 11388–11402 (1996).
[Crossref]

J. E. Goff and W. L. Schaich, “Hydrodynamic theory of photon drag,” Phys. Rev. B 56, 15421–15430 (1997).
[Crossref]

J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals,” Phys. Rev. B 61, 10471–10477 (2000).
[Crossref]

Q. Bai, J. Chen, C. Liu, J. Xu, C. Cheng, N.-H. Shen, and H.-T. Wang, “Polarization splitter of surface polaritons,” Phys. Rev. B 79, 155401 (2009).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (8)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009).
[Crossref] [PubMed]

P. B. Catrysse and S. Fan, “Transverse electromagnetic modes in aperture waveguides containing a metamaterial with extreme anisotropy,” Phys. Rev. Lett. 106, 223902 (2011).
[Crossref] [PubMed]

V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett. 69, 180–183 (1992).
[Crossref] [PubMed]

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett. 103, 186801 (2009).
[Crossref] [PubMed]

T. Hatano, T. Ishihara, S. G. Tikhodeev, and N. A. Gippius, “Transverse photovoltage induced by circularly polarized light,” Phys. Rev. Lett. 103, 103906 (2009).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Phys. Status Solidi A (1)

T. S. Moss, “Photon pressure effects in semiconductors,” Phys. Status Solidi A 8, 223–232 (1971).
[Crossref]

Proc. IRE (1)

H. M. Barlow, “The Hall effect and its application to microwave power measurement,” Proc. IRE 46, 1411–1413 (1958).
[Crossref]

Science (7)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330, 1510–1512 (2010).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic clock at microwave frequencies,” Science 314, 977–980 (2006).
[Crossref] [PubMed]

Other (1)

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of geometric structure (a) and parameters (b) of the proposed metasurface.
Fig. 2
Fig. 2 Longitudinal photoinduced voltage as a function of frequency for normally incident right- and left-handed circularly polarized lights, respectively. RCP and LCP represent the right- and left-handed circular polarizations, respectively.
Fig. 3
Fig. 3 Longitudinal photoinduced voltage as a function of frequency for normally incident p and s polarized plane waves, respectively. V x p and V x s represent the longitudinal photoin-duced voltage for p and s polarized plane wave, respectively. V a = ( V x p + V x s ) / 2.
Fig. 4
Fig. 4 Distributions of the magnetic fields on the x-z (a) and y-z (d) planes and current on the x-z (b) and y-z (e) planes and electric field patterns on the x-y (c and f) middle planes of gold particles at the peaks of 315 and 340 THz for normally incident p and s polarized plane waves, respectively. P and S denote the p and s polarized plane waves, respectively.
Fig. 5
Fig. 5 Transverse photoinduced voltage as a function of frequency for normally incident right- and left-handed circularly polarized lights, respectively.
Fig. 6
Fig. 6 The change of | V x p × V x s | with frequency.
Fig. 7
Fig. 7 Electric field patterns and distributions of the magnetic fields on x-y middle planes of both gold particles (top row) and dielectric interlayer (bottom row), respectively, at the frequency of 330 THz for normally incident right- and left-handed circularly polarized lights, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V i = L F i q p Ω ,
F i = S T i j n j d S ,
T i j = 1 2 R e [ ε ( E i E j * 1 2 δ i j E 2 ) + μ ( H i H j * 1 2 δ i j H 2 ) ] ,
E = 1 2 ( E p ± i E s ) ,
V x = 1 4 p ρ Ω R e ( S u ε E p x E p z * d S u S l ε E p x E p z * d S l + S u μ H p x H p z * d S u S l μ H p x H p z * d S l + S u ε E s x E s z * d S u S l ε E s x E s z * d S l + S u μ H s x H s z * d S u S 1 μ H s x H s z * d S l ) ,
V y = 1 4 q ρ Ω R e ( i S u ε E p y E s z * d S u ± i S l ε E p y E s z * d S l i S u μ H s y H p z * d S u ± i S l μ H s y H p z * d S l ± i S u ε E s y E p z * d S u i S l ε E s y E p z * d S l ± i S u μ H p y H s z * d S u S 1 μ H p y H s z * d S l ) .

Metrics