Abstract

Microring and microdisk lasers are potential candidates for small footprint, low threshold in-plane integrated lasers; however, they exhibit multimode lasing spectra and bistability. Here, we theoretically propose and experimentally demonstrate a novel approach for achieving single mode lasing in microring lasers. Our approach is based on increasing the radiation loss of all but one of the resonant modes of microring resonators by integrating second order gratings on the microrings’ waveguide. We present single mode operation of electrically pumped semiconductor microring lasers whose lasing modes are lithographically selected via the second order grating. We also show that adding the grating does not increase the lasing threshold current significantly.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode characteristics for unidirectional-emission microring resonator lasers

Xiu-Wen Ma, Xiao-Meng Lv, Yong-Zhen Huang, Yue-De Yang, Jin-Long Xiao, and Yun Du
J. Opt. Soc. Am. B 31(11) 2773-2778 (2014)

Controllable mode multistability in microring lasers

Guohui Yuan and Zhuoran Wang
Opt. Express 21(8) 9624-9635 (2013)

Unidirectional III-V microdisk lasers heterogeneously integrated on SOI

P. Mechet, S. Verstuyft, T. de Vries, T. Spuesens, P. Regreny, D. Van Thourhout, G. Roelkens, and G. Morthier
Opt. Express 21(16) 19339-19352 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
    [Crossref]
  2. K. Amarnath, R. Grover, and S. Kanakaraju, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17, 2280–2282 (2005).
    [Crossref]
  3. A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich, “Directly modulated wavelength-multiplexed integrated microring laser array,” IEEE Photon. Technol. Lett. 20, 1411–1413 (2008).
    [Crossref]
  4. J. D. B. Bradley, E. S. Hosseini, Z. Su, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Monolithic erbium- and ytterbium-doped microring lasers on silicon chips,” Opt. Express 22, 12226 (2014).
    [Crossref] [PubMed]
  5. M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051 (2002).
    [Crossref]
  6. M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. Van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-μ m region) quantum-dot microring lasers,” IEEE Photon. Technol. Lett. 20, 446–448 (2008).
    [Crossref]
  7. A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: noise properties,” IEEE J. Quantum Electron. 48, 99–106 (2012).
    [Crossref]
  8. A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47, 1557–1564 (2011).
    [Crossref]
  9. A. Kapsalis, I. Stamataki, S. Mikroulis, D. Syvridis, and M. Hamacher, “Widely tunable all-active microring lasers,” IEEE Photon. Technol. Lett. 18, 2641–2643 (2006).
    [Crossref]
  10. N. Kryzhanovskaya, I. Mukhin, E. Moiseev, I. Shostak, A. Bogdanov, A. Nadtochiy, M. Maximov, A. Zhukov, M. Kulagina, K. Vashanova, Y. Zadiranov, S. Troshkov, A. Lipovskii, and A. Mintairov, “Control of emission spectra in quantum dot microdisk/microring lasers,” Opt. Express 22, 25782 (2014).
    [Crossref] [PubMed]
  11. D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D. T. Spencer, Y.-H. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, and J. E. Bowers, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Express 17, 20355–20364 (2009).
    [Crossref] [PubMed]
  12. K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
    [Crossref]
  13. J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, “InP/InGaAsP flattened ring lasers with low-loss etched beam splitters,” IEEE Photon. Technol. Lett. 23, 573–575 (2011).
    [Crossref]
  14. L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Express 33, 1150 (2008).
  15. G. Mezosi, M. J. Strain, S. Furst, and M. Sorel, “Bistable micro-ring lasers with compact footprint and high output efficiency,” IEEE J. Quantum Electron. 48, 1023–1030 (2012).
    [Crossref]
  16. I. Stamataki, S. Mikroulis, A. Kapsalis, and D. Syvridis, “Investigation on the multimode dynamics of In-GaAsPInP microring lasers,” IEEE J. Quantum Electron. 42, 1266–1273 (2006).
    [Crossref]
  17. K. E. Chlouverakis, S. Mikroulis, I. Stamataki, and D. Syvridis, “Chaotic dynamics of semiconductor microring lasers,” Opt. Lett. 32, 2912 (2007).
    [Crossref] [PubMed]
  18. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
    [Crossref]
  19. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
    [Crossref]
  20. S. Srinivasan, D. A. Fattal, M. Fiorentino, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
    [Crossref]
  21. L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
    [Crossref] [PubMed]
  22. Y. M. Kang, A. Arbabi, and L. L. Goddard, “Engineering the spectral reflectance of microring resonators with integrated reflective elements,” Opt. Express 18, 16813–16825 (2010).
    [Crossref] [PubMed]
  23. A. Arbabi, Y. M. Kang, and L. L. Goddard, “Cylindrical coordinates coupled mode theory,” IEEE J. Quantum Electron. 46, 1769–1774 (2010).
    [Crossref]
  24. A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett. 99, 091105 (2011).
    [Crossref]
  25. M.-F. Xue, Y. M. Kang, A. Arbabi, S. J. McKeown, L. L. Goddard, and J.-M. Jin, “Fast and accurate finite element analysis of large-scale three-dimensional photonic devices with a robust domain decomposition method,” Opt. Express 22, 4437–4452 (2014).
    [Crossref] [PubMed]
  26. A. Arbabi and L. L. Goddard, “Single Wavelength Microring Laser,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. CM3F.2.
  27. A. Arbabi and L. L. Goddard, “Grating assisted mode coupling in microring resonators,” in “2013 IEEE Photonics Conference,” (IEEE, 2013), pp. 434–435.
  28. J. D. Jackson, Classical Electrodynamics, 3. (Wiley, 1999).
  29. A. Arbabi and S. Safavi-Naeini, “Maximum gain of a lossy antenna,” IEEE Trans. Antennas Propag. 60, 2–7 (2012).
    [Crossref]
  30. A. Devaney and E. Wolf, “Radiating and nonradiating classical current distributions and the fields they generate,” Phys. Rev. D 8, 1044–1047 (1973).
    [Crossref]

2014 (4)

2012 (4)

S. Srinivasan, D. A. Fattal, M. Fiorentino, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

A. Arbabi and S. Safavi-Naeini, “Maximum gain of a lossy antenna,” IEEE Trans. Antennas Propag. 60, 2–7 (2012).
[Crossref]

G. Mezosi, M. J. Strain, S. Furst, and M. Sorel, “Bistable micro-ring lasers with compact footprint and high output efficiency,” IEEE J. Quantum Electron. 48, 1023–1030 (2012).
[Crossref]

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: noise properties,” IEEE J. Quantum Electron. 48, 99–106 (2012).
[Crossref]

2011 (3)

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47, 1557–1564 (2011).
[Crossref]

J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, “InP/InGaAsP flattened ring lasers with low-loss etched beam splitters,” IEEE Photon. Technol. Lett. 23, 573–575 (2011).
[Crossref]

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett. 99, 091105 (2011).
[Crossref]

2010 (3)

Y. M. Kang, A. Arbabi, and L. L. Goddard, “Engineering the spectral reflectance of microring resonators with integrated reflective elements,” Opt. Express 18, 16813–16825 (2010).
[Crossref] [PubMed]

A. Arbabi, Y. M. Kang, and L. L. Goddard, “Cylindrical coordinates coupled mode theory,” IEEE J. Quantum Electron. 46, 1769–1774 (2010).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

2009 (1)

2008 (3)

M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. Van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-μ m region) quantum-dot microring lasers,” IEEE Photon. Technol. Lett. 20, 446–448 (2008).
[Crossref]

L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Express 33, 1150 (2008).

A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich, “Directly modulated wavelength-multiplexed integrated microring laser array,” IEEE Photon. Technol. Lett. 20, 1411–1413 (2008).
[Crossref]

2007 (1)

2006 (2)

A. Kapsalis, I. Stamataki, S. Mikroulis, D. Syvridis, and M. Hamacher, “Widely tunable all-active microring lasers,” IEEE Photon. Technol. Lett. 18, 2641–2643 (2006).
[Crossref]

I. Stamataki, S. Mikroulis, A. Kapsalis, and D. Syvridis, “Investigation on the multimode dynamics of In-GaAsPInP microring lasers,” IEEE J. Quantum Electron. 42, 1266–1273 (2006).
[Crossref]

2005 (1)

K. Amarnath, R. Grover, and S. Kanakaraju, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17, 2280–2282 (2005).
[Crossref]

2004 (1)

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

2003 (1)

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

2002 (1)

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051 (2002).
[Crossref]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

1973 (1)

A. Devaney and E. Wolf, “Radiating and nonradiating classical current distributions and the fields they generate,” Phys. Rev. D 8, 1044–1047 (1973).
[Crossref]

Adam, T. N.

Amarnath, K.

K. Amarnath, R. Grover, and S. Kanakaraju, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17, 2280–2282 (2005).
[Crossref]

Anantathanasarn, S.

M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. Van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-μ m region) quantum-dot microring lasers,” IEEE Photon. Technol. Lett. 20, 446–448 (2008).
[Crossref]

Arbabi, A.

M.-F. Xue, Y. M. Kang, A. Arbabi, S. J. McKeown, L. L. Goddard, and J.-M. Jin, “Fast and accurate finite element analysis of large-scale three-dimensional photonic devices with a robust domain decomposition method,” Opt. Express 22, 4437–4452 (2014).
[Crossref] [PubMed]

A. Arbabi and S. Safavi-Naeini, “Maximum gain of a lossy antenna,” IEEE Trans. Antennas Propag. 60, 2–7 (2012).
[Crossref]

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett. 99, 091105 (2011).
[Crossref]

Y. M. Kang, A. Arbabi, and L. L. Goddard, “Engineering the spectral reflectance of microring resonators with integrated reflective elements,” Opt. Express 18, 16813–16825 (2010).
[Crossref] [PubMed]

A. Arbabi, Y. M. Kang, and L. L. Goddard, “Cylindrical coordinates coupled mode theory,” IEEE J. Quantum Electron. 46, 1769–1774 (2010).
[Crossref]

A. Arbabi and L. L. Goddard, “Single Wavelength Microring Laser,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. CM3F.2.

A. Arbabi and L. L. Goddard, “Grating assisted mode coupling in microring resonators,” in “2013 IEEE Photonics Conference,” (IEEE, 2013), pp. 434–435.

Baba, T.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051 (2002).
[Crossref]

Baets, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

Beausoleil, R. G.

S. Srinivasan, D. A. Fattal, M. Fiorentino, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D. T. Spencer, Y.-H. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, and J. E. Bowers, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Express 17, 20355–20364 (2009).
[Crossref] [PubMed]

Bennecer, A.

A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich, “Directly modulated wavelength-multiplexed integrated microring laser array,” IEEE Photon. Technol. Lett. 20, 1411–1413 (2008).
[Crossref]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

Bogdanov, A.

Bowers, J. E.

S. Srinivasan, D. A. Fattal, M. Fiorentino, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D. T. Spencer, Y.-H. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, and J. E. Bowers, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Express 17, 20355–20364 (2009).
[Crossref] [PubMed]

Bradley, J. D. B.

Chang, H.-H.

Chlouverakis, K. E.

Chow, E.

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett. 99, 091105 (2011).
[Crossref]

Coldren, L. A.

J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, “InP/InGaAsP flattened ring lasers with low-loss etched beam splitters,” IEEE Photon. Technol. Lett. 23, 573–575 (2011).
[Crossref]

Coolbaugh, D.

Dai, D.

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

DenBesten, J. H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

Devaney, A.

A. Devaney and E. Wolf, “Radiating and nonradiating classical current distributions and the fields they generate,” Phys. Rev. D 8, 1044–1047 (1973).
[Crossref]

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

Fang, A. W.

Fattal, D. A.

S. Srinivasan, D. A. Fattal, M. Fiorentino, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

Feng, L.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Fiorentino, M.

S. Srinivasan, D. A. Fattal, M. Fiorentino, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D. T. Spencer, Y.-H. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, and J. E. Bowers, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Express 17, 20355–20364 (2009).
[Crossref] [PubMed]

Fujita, M.

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051 (2002).
[Crossref]

Furst, S.

G. Mezosi, M. J. Strain, S. Furst, and M. Sorel, “Bistable micro-ring lasers with compact footprint and high output efficiency,” IEEE J. Quantum Electron. 48, 1023–1030 (2012).
[Crossref]

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

Goddard, L. L.

M.-F. Xue, Y. M. Kang, A. Arbabi, S. J. McKeown, L. L. Goddard, and J.-M. Jin, “Fast and accurate finite element analysis of large-scale three-dimensional photonic devices with a robust domain decomposition method,” Opt. Express 22, 4437–4452 (2014).
[Crossref] [PubMed]

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett. 99, 091105 (2011).
[Crossref]

Y. M. Kang, A. Arbabi, and L. L. Goddard, “Engineering the spectral reflectance of microring resonators with integrated reflective elements,” Opt. Express 18, 16813–16825 (2010).
[Crossref] [PubMed]

A. Arbabi, Y. M. Kang, and L. L. Goddard, “Cylindrical coordinates coupled mode theory,” IEEE J. Quantum Electron. 46, 1769–1774 (2010).
[Crossref]

A. Arbabi and L. L. Goddard, “Grating assisted mode coupling in microring resonators,” in “2013 IEEE Photonics Conference,” (IEEE, 2013), pp. 434–435.

A. Arbabi and L. L. Goddard, “Single Wavelength Microring Laser,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. CM3F.2.

Grover, R.

K. Amarnath, R. Grover, and S. Kanakaraju, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17, 2280–2282 (2005).
[Crossref]

Guzzon, R. S.

J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, “InP/InGaAsP flattened ring lasers with low-loss etched beam splitters,” IEEE Photon. Technol. Lett. 23, 573–575 (2011).
[Crossref]

Hamacher, M.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: noise properties,” IEEE J. Quantum Electron. 48, 99–106 (2012).
[Crossref]

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47, 1557–1564 (2011).
[Crossref]

A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich, “Directly modulated wavelength-multiplexed integrated microring laser array,” IEEE Photon. Technol. Lett. 20, 1411–1413 (2008).
[Crossref]

A. Kapsalis, I. Stamataki, S. Mikroulis, D. Syvridis, and M. Hamacher, “Widely tunable all-active microring lasers,” IEEE Photon. Technol. Lett. 18, 2641–2643 (2006).
[Crossref]

Heidrich, H.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: noise properties,” IEEE J. Quantum Electron. 48, 99–106 (2012).
[Crossref]

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47, 1557–1564 (2011).
[Crossref]

A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich, “Directly modulated wavelength-multiplexed integrated microring laser array,” IEEE Photon. Technol. Lett. 20, 1411–1413 (2008).
[Crossref]

Hill, M. T.

M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. Van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-μ m region) quantum-dot microring lasers,” IEEE Photon. Technol. Lett. 20, 446–448 (2008).
[Crossref]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

Hosseini, E. S.

Hung, Y.-J.

J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, “InP/InGaAsP flattened ring lasers with low-loss etched beam splitters,” IEEE Photon. Technol. Lett. 23, 573–575 (2011).
[Crossref]

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3. (Wiley, 1999).

Jin, J.-M.

Kanakaraju, S.

K. Amarnath, R. Grover, and S. Kanakaraju, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17, 2280–2282 (2005).
[Crossref]

Kang, Y. M.

Kapsalis, A.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: noise properties,” IEEE J. Quantum Electron. 48, 99–106 (2012).
[Crossref]

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47, 1557–1564 (2011).
[Crossref]

A. Kapsalis, I. Stamataki, S. Mikroulis, D. Syvridis, and M. Hamacher, “Widely tunable all-active microring lasers,” IEEE Photon. Technol. Lett. 18, 2641–2643 (2006).
[Crossref]

I. Stamataki, S. Mikroulis, A. Kapsalis, and D. Syvridis, “Investigation on the multimode dynamics of In-GaAsPInP microring lasers,” IEEE J. Quantum Electron. 42, 1266–1273 (2006).
[Crossref]

Khoe, G.-D.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

Kim, B.

J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, “InP/InGaAsP flattened ring lasers with low-loss etched beam splitters,” IEEE Photon. Technol. Lett. 23, 573–575 (2011).
[Crossref]

Kryzhanovskaya, N.

Kulagina, M.

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

Kuo, Y.-H.

Leake, G.

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

Liang, D.

Lipovskii, A.

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Express 33, 1150 (2008).

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

Lu, C.-Y.

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett. 99, 091105 (2011).
[Crossref]

Ma, R.-M.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Maximov, M.

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

McKeown, S. J.

Mesaritakis, C.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: noise properties,” IEEE J. Quantum Electron. 48, 99–106 (2012).
[Crossref]

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47, 1557–1564 (2011).
[Crossref]

Mezosi, G.

G. Mezosi, M. J. Strain, S. Furst, and M. Sorel, “Bistable micro-ring lasers with compact footprint and high output efficiency,” IEEE J. Quantum Electron. 48, 1023–1030 (2012).
[Crossref]

Mikroulis, S.

K. E. Chlouverakis, S. Mikroulis, I. Stamataki, and D. Syvridis, “Chaotic dynamics of semiconductor microring lasers,” Opt. Lett. 32, 2912 (2007).
[Crossref] [PubMed]

A. Kapsalis, I. Stamataki, S. Mikroulis, D. Syvridis, and M. Hamacher, “Widely tunable all-active microring lasers,” IEEE Photon. Technol. Lett. 18, 2641–2643 (2006).
[Crossref]

I. Stamataki, S. Mikroulis, A. Kapsalis, and D. Syvridis, “Investigation on the multimode dynamics of In-GaAsPInP microring lasers,” IEEE J. Quantum Electron. 42, 1266–1273 (2006).
[Crossref]

Mintairov, A.

Moiseev, E.

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

Mukhin, I.

Nadtochiy, A.

Nakagawa, A.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

Norberg, E. J.

J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, “InP/InGaAsP flattened ring lasers with low-loss etched beam splitters,” IEEE Photon. Technol. Lett. 23, 573–575 (2011).
[Crossref]

Nötzel, R.

M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. Van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-μ m region) quantum-dot microring lasers,” IEEE Photon. Technol. Lett. 20, 446–448 (2008).
[Crossref]

Nozaki, K.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

Oei, Y. S.

M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. Van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-μ m region) quantum-dot microring lasers,” IEEE Photon. Technol. Lett. 20, 446–448 (2008).
[Crossref]

Oei, Y.-S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

Okumura, T.

Parker, J. S.

J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, “InP/InGaAsP flattened ring lasers with low-loss etched beam splitters,” IEEE Photon. Technol. Lett. 23, 573–575 (2011).
[Crossref]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

Penty, R. V.

A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich, “Directly modulated wavelength-multiplexed integrated microring laser array,” IEEE Photon. Technol. Lett. 20, 1411–1413 (2008).
[Crossref]

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

Safavi-Naeini, S.

A. Arbabi and S. Safavi-Naeini, “Maximum gain of a lossy antenna,” IEEE Trans. Antennas Propag. 60, 2–7 (2012).
[Crossref]

Sano, D.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

Shang, L.

L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Express 33, 1150 (2008).

Shostak, I.

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

Smit, M. K.

M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. Van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-μ m region) quantum-dot microring lasers,” IEEE Photon. Technol. Lett. 20, 446–448 (2008).
[Crossref]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

Sorel, M.

G. Mezosi, M. J. Strain, S. Furst, and M. Sorel, “Bistable micro-ring lasers with compact footprint and high output efficiency,” IEEE J. Quantum Electron. 48, 1023–1030 (2012).
[Crossref]

Spencer, D. T.

S. Srinivasan, D. A. Fattal, M. Fiorentino, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

D. Liang, M. Fiorentino, T. Okumura, H.-H. Chang, D. T. Spencer, Y.-H. Kuo, A. W. Fang, D. Dai, R. G. Beausoleil, and J. E. Bowers, “Electrically-pumped compact hybrid silicon microring lasers for optical interconnects,” Opt. Express 17, 20355–20364 (2009).
[Crossref] [PubMed]

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

Srinivasan, S.

S. Srinivasan, D. A. Fattal, M. Fiorentino, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

Stamataki, I.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: noise properties,” IEEE J. Quantum Electron. 48, 99–106 (2012).
[Crossref]

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47, 1557–1564 (2011).
[Crossref]

K. E. Chlouverakis, S. Mikroulis, I. Stamataki, and D. Syvridis, “Chaotic dynamics of semiconductor microring lasers,” Opt. Lett. 32, 2912 (2007).
[Crossref] [PubMed]

A. Kapsalis, I. Stamataki, S. Mikroulis, D. Syvridis, and M. Hamacher, “Widely tunable all-active microring lasers,” IEEE Photon. Technol. Lett. 18, 2641–2643 (2006).
[Crossref]

I. Stamataki, S. Mikroulis, A. Kapsalis, and D. Syvridis, “Investigation on the multimode dynamics of In-GaAsPInP microring lasers,” IEEE J. Quantum Electron. 42, 1266–1273 (2006).
[Crossref]

Strain, M. J.

G. Mezosi, M. J. Strain, S. Furst, and M. Sorel, “Bistable micro-ring lasers with compact footprint and high output efficiency,” IEEE J. Quantum Electron. 48, 1023–1030 (2012).
[Crossref]

Su, Z.

Syvridis, D.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: noise properties,” IEEE J. Quantum Electron. 48, 99–106 (2012).
[Crossref]

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47, 1557–1564 (2011).
[Crossref]

K. E. Chlouverakis, S. Mikroulis, I. Stamataki, and D. Syvridis, “Chaotic dynamics of semiconductor microring lasers,” Opt. Lett. 32, 2912 (2007).
[Crossref] [PubMed]

A. Kapsalis, I. Stamataki, S. Mikroulis, D. Syvridis, and M. Hamacher, “Widely tunable all-active microring lasers,” IEEE Photon. Technol. Lett. 18, 2641–2643 (2006).
[Crossref]

I. Stamataki, S. Mikroulis, A. Kapsalis, and D. Syvridis, “Investigation on the multimode dynamics of In-GaAsPInP microring lasers,” IEEE J. Quantum Electron. 42, 1266–1273 (2006).
[Crossref]

Troshkov, S.

Van Thourhout, D.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

Van Veldhoven, P. J.

M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. Van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-μ m region) quantum-dot microring lasers,” IEEE Photon. Technol. Lett. 20, 446–448 (2008).
[Crossref]

Vashanova, K.

Wang, Y.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Watts, M. R.

White, I. H.

A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich, “Directly modulated wavelength-multiplexed integrated microring laser array,” IEEE Photon. Technol. Lett. 20, 1411–1413 (2008).
[Crossref]

Williams, K. A.

A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich, “Directly modulated wavelength-multiplexed integrated microring laser array,” IEEE Photon. Technol. Lett. 20, 1411–1413 (2008).
[Crossref]

Wolf, E.

A. Devaney and E. Wolf, “Radiating and nonradiating classical current distributions and the fields they generate,” Phys. Rev. D 8, 1044–1047 (1973).
[Crossref]

Wong, Z. J.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Xu, L.

L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Express 33, 1150 (2008).

Xue, M.-F.

Zadiranov, Y.

Zhang, X.

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Zhu, Y.

M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. Van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-μ m region) quantum-dot microring lasers,” IEEE Photon. Technol. Lett. 20, 446–448 (2008).
[Crossref]

Zhukov, A.

Appl. Phys. Lett. (3)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051 (2002).
[Crossref]

A. Arbabi, Y. M. Kang, C.-Y. Lu, E. Chow, and L. L. Goddard, “Realization of a narrowband single wavelength microring mirror,” Appl. Phys. Lett. 99, 091105 (2011).
[Crossref]

IEEE J. Quantum Electron. (5)

A. Arbabi, Y. M. Kang, and L. L. Goddard, “Cylindrical coordinates coupled mode theory,” IEEE J. Quantum Electron. 46, 1769–1774 (2010).
[Crossref]

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: noise properties,” IEEE J. Quantum Electron. 48, 99–106 (2012).
[Crossref]

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47, 1557–1564 (2011).
[Crossref]

G. Mezosi, M. J. Strain, S. Furst, and M. Sorel, “Bistable micro-ring lasers with compact footprint and high output efficiency,” IEEE J. Quantum Electron. 48, 1023–1030 (2012).
[Crossref]

I. Stamataki, S. Mikroulis, A. Kapsalis, and D. Syvridis, “Investigation on the multimode dynamics of In-GaAsPInP microring lasers,” IEEE J. Quantum Electron. 42, 1266–1273 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9, 1355–1360 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (6)

J. S. Parker, E. J. Norberg, Y.-J. Hung, B. Kim, R. S. Guzzon, and L. A. Coldren, “InP/InGaAsP flattened ring lasers with low-loss etched beam splitters,” IEEE Photon. Technol. Lett. 23, 573–575 (2011).
[Crossref]

A. Kapsalis, I. Stamataki, S. Mikroulis, D. Syvridis, and M. Hamacher, “Widely tunable all-active microring lasers,” IEEE Photon. Technol. Lett. 18, 2641–2643 (2006).
[Crossref]

M. T. Hill, S. Anantathanasarn, Y. Zhu, Y. S. Oei, P. J. Van Veldhoven, M. K. Smit, and R. Nötzel, “InAs-InP (1.55-μ m region) quantum-dot microring lasers,” IEEE Photon. Technol. Lett. 20, 446–448 (2008).
[Crossref]

K. Amarnath, R. Grover, and S. Kanakaraju, “Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation,” IEEE Photon. Technol. Lett. 17, 2280–2282 (2005).
[Crossref]

A. Bennecer, K. A. Williams, R. V. Penty, I. H. White, M. Hamacher, and H. Heidrich, “Directly modulated wavelength-multiplexed integrated microring laser array,” IEEE Photon. Technol. Lett. 20, 1411–1413 (2008).
[Crossref]

S. Srinivasan, D. A. Fattal, M. Fiorentino, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector-assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).
[Crossref]

IEEE Trans. Antennas Propag. (1)

A. Arbabi and S. Safavi-Naeini, “Maximum gain of a lossy antenna,” IEEE Trans. Antennas Propag. 60, 2–7 (2012).
[Crossref]

Nature (London) (1)

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. DenBesten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature (London) 432, 206–209 (2004).
[Crossref]

Nature Photon. (1)

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nature Photon. 4, 182–187 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. D (1)

A. Devaney and E. Wolf, “Radiating and nonradiating classical current distributions and the fields they generate,” Phys. Rev. D 8, 1044–1047 (1973).
[Crossref]

Science (1)

L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, “Single-mode laser by parity-time symmetry breaking,” Science 346, 972–975 (2014).
[Crossref] [PubMed]

Other (3)

A. Arbabi and L. L. Goddard, “Single Wavelength Microring Laser,” in “CLEO: 2013,” (OSA, Washington, D.C., 2013), p. CM3F.2.

A. Arbabi and L. L. Goddard, “Grating assisted mode coupling in microring resonators,” in “2013 IEEE Photonics Conference,” (IEEE, 2013), pp. 434–435.

J. D. Jackson, Classical Electrodynamics, 3. (Wiley, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of a microring resonator with a small refractive index perturbation. The perturbation can be replaced with an equivalent volume current.

Fig. 2
Fig. 2

(a) Radiation resistance of multipole modes. Radiation resistance for the TE and TM modes of the same polar order are almost equal to each other. (b) Radiation resistance on a log scale. The radiation resistance values drop fast for l > kR.

Fig. 3
Fig. 3

(a) Schematic illustration of a microring resonator with an azimuthal grating. (b) Electric field distribution of the non-radiating and (c) radiating resonant modes with the same azimuthal order as the grating. The insets in (b) and (c) show the zoomed in views of the simulations and the locations of the electrical field nodes and antinodes with respect to grating indentations.

Fig. 4
Fig. 4

(a) Simulated logarithmic scale electric field amplitudes of resonant modes of a microring with second order grating at their corresponding resonant wavelengths. ∆m = m−M represents the difference between the azimuthal order of the mode and that of the grating. Notice that for each value of ∆m there are two modes in each column due to the two originally degenerate modes of the plain microring. (b) Radiation loss of the modes presented in (a) as a function of grating indentation depth.

Fig. 5
Fig. 5

(a) Epi-layer structure used for fabrication of a single mode microring laser. (b) Dependence of the radiation quality factor and bending loss on the etch depth into the GaAs core. Location of the quantum well (QW) is represented by a vertical dotted line in (b).

Fig. 6
Fig. 6

(a) Schematics of the microring with a second order grating. (b) Scanning electron micrograph of the oxide mask used for etching the device. The inset shows a zoomed in view of the microring waveguide.

Fig. 7
Fig. 7

(a) Output power versus current curve of a grating integrated microring laser with a grating with azimuthal order of M=724. (b) Optical spectra of two grating integrated microring lasers at the same injection currents of 27.5 mA. The azimuthal order of the grating is M=724 for the blue curve, and M=720 for the red curve. (c) Spectra of a microring laser without a grating, and (d) with a grating with azimuthal order of M=724 at different injection currents.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

P = l = 1 m = l l P l m TM + P l m TE ,
P l m TM / TE = 1 2 R l TM / TE I l m TM / TE 2 ,
× E = j ω μ 0 H ,
× H = j ω ε 0 ε r E + J ,
J = j ω ε 0 ( ε r p ε r ) E ,
E = l = 1 m = l l a l m E l m TM + b l m E l m TE ,
H = 1 η 0 l = 1 m = l l a l m E l m TM b l m E l m TE ,
a l m = V J U l m * d v ,
b l m = V J V l m * d v ,
V U l m V l m * d v = 0 ,
V U l m U l m * d v = δ l l δ m m U l m 2 ,
V V l m V l m * d v = δ l l δ m m V l m 2 ,
J = l = 1 m = l l ( a l m U l m U l m 2 + b l m V l m V l m 2 ) + J = l = 1 m = l l ( J l m TM + J l m TE ) + J ,
V J { U l m * V l m * } d v = 0.
P = Z 0 2 k 2 l = 1 m = l l | a l m | 2 + | b l m | 2 = l = 1 m = l l P l m TM + P l m TE ,
P l m TM / TE = 1 2 R l TM / TE I l m TM / TE 2 ,
I l m TM / TE 2 λ V | J l m TM / TE | 2 d v ,
R l TM / TE η 0 2 π k × { U l m 2 for TM V l m 2 for TE .
E l m TM = j η 0 k l ( l + 1 ) × ( h l ( 2 ) ( k r ) L Y l m ) ,
E l m TM = η 0 l ( l + 1 ) h l ( 2 ) ( k r ) L Y l m ,
Y l m ( θ , ϕ ) = 2 l + 1 4 π ( l m ) ! ( l + m ) ! P l m ( cos θ ) e j m ϕ ,
L = j r × = j sin θ ϕ θ ^ + j θ ϕ ^ .
U l m k l ( l + 1 ) r ( r j l ( k r ) ) Y l m + k l ( l + 1 ) r j l ( k r ) Y l m r ^ ,
V l m j k 2 l ( l + 1 ) j l ( k r ) Y l m × r .
U l m 2 = k π 2 0 k R l ( l + 1 ) J l + 1 2 2 ( u ) + ( u J l 1 2 ( u ) l J l + 1 2 ( u ) ) 2 u d u ,
V l m 2 = k π 4 ( k R ) 2 ( J l + 1 2 2 ( k R ) J l + 3 2 ( k R ) J l 1 2 ( k R ) ) .

Metrics