Abstract

A new concept for the fabrication of integrated microring resonators, requiring only one single epitaxial growth and two single-side lithographic steps, is proposed in what is the simplest fabrication scheme for vertical microrings published to date. The approach is based on two vertically stacked phase matched core layers. The effect of bus waveguide, coupling region and ring structure parameters is theoretically analyzed. Numerical calculations predict high performance devices with quality factors of over 10000. The scheme can feature both active and passive regions, allowing the fabrication of microring lasers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vertically coupled GaInAsP–InP microring resonators

R. Grover, P. P. Absil, V. Van, J. V. Hryniewicz, B. E. Little, O. King, L. C. Calhoun, F. G. Johnson, and P.-T. Ho
Opt. Lett. 26(8) 506-508 (2001)

Highly-efficient fully resonant vertical couplers for InP active-passive monolithic integration using vertically phase matched waveguides

Óscar García López, Daniel Lasaosa, Manuel López-Amo, and Marko Galarza
Opt. Express 21(19) 22717-22727 (2013)

Vertically stacked microring waveguides for coupling between multiple photonic planes

Jonathan T. Bessette and Donghwan Ahn
Opt. Express 21(11) 13580-13591 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. C. M. M. Souza, L. A. M. Barea, F. Vallini, G. F. M. Rezende, G. S. Wiederhecker, and N. C. Frateschi, “Embedded coupled microrings with high-finesse and close-spaced resonances for optical signal processing,” Opt. Express 22(9), 10430–10438 (2014).
    [PubMed]
  2. X. M. Lv, Y. D. Yang, L. X. Zou, H. Long, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode characteristics and optical bistability for AlGaInAs/InP microring lasers,” IEEE Photon. Technol. Lett. 26(17), 1703–1706 (2014).
    [Crossref]
  3. W. D. Sacher, W. M. J. Green, D. M. Gill, S. Assefa, T. Barwicz, M. Khater, E. Kiewra, C. Reinholm, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “Binary phase-shift keying by coupling modulation of microrings,” Opt. Express 22(17), 20252–20259 (2014).
    [Crossref] [PubMed]
  4. R. D. Mansoor, H. Sasse, M. Al Asadi, S. J. Ison, and A. P. Duffy, “Over coupled ring resonator-based add/drop filters,” IEEE J. Quantum Electron. 50(8), 598–604 (2014).
    [Crossref]
  5. B. Yang, A. Shen, C. Qiu, T. Hu, L. Yang, H. Yu, X. Jiang, Y. Li, Y. Hao, and J. Yang, “Microring-based ratio-metric wavelength monitor on silicon,” Opt. Lett. 39(11), 3298–3300 (2014).
    [Crossref] [PubMed]
  6. A. Fushimi and T. Tanabe, “All-optical logic gate operating with single wavelength,” Opt. Express 22(4), 4466–4479 (2014).
    [Crossref] [PubMed]
  7. P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho, “Vertically coupled microring resonators using polymer wafer bonding,” IEEE Photon. Technol. Lett. 13(1), 49–51 (2001).
    [Crossref]
  8. A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47(12), 1557–1564 (2011).
    [Crossref]
  9. S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
    [Crossref]
  10. C. W. Tee, K. A. Williams, R. V. Penty, I. H. White, and M. Hamacher, “Noncritical waveguide alignment for vertically coupled microring using a mode-expanded bus architecture,” IEEE Photon. Technol. Lett. 18(20), 2129–2131 (2006).
    [Crossref]
  11. O. G. López, D. Lasaosa, M. López-Amo, and M. Galarza, “Highly-efficient fully resonant vertical couplers for InP active-passive monolithic integration using vertically phase matched waveguides,” Opt. Express 21(19), 22717–22727 (2013).
    [Crossref] [PubMed]
  12. M. Heinbach, M. Schienle, A. Schmid, B. Acklin, and G. Müller, “Low-loss bent connections for optical switches,” J. Lightwave Technol. 15(5), 833–837 (1997).
    [Crossref]
  13. W. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994).
    [Crossref]
  14. Fimmwave (Photon Design), [ http://www.photond.com ].
  15. C. W. Tee, K. A. Williams, R. V. Penty, and I. H. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 108–116 (2006).
  16. S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally coupled buried heterostructure high-Q ring resonators,” IEEE Photon. Technol. Lett. 16(10), 2266–2268 (2004).
    [Crossref]
  17. C. Vassallo and J. M. van der Keur, “Comparison of a few transparent boundary conditions for finite-difference optical mode-solvers,” J. Lightwave Technol. 15(2), 397–402 (1997).
    [Crossref]

2014 (6)

2013 (1)

2011 (1)

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47(12), 1557–1564 (2011).
[Crossref]

2006 (2)

C. W. Tee, K. A. Williams, R. V. Penty, and I. H. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 108–116 (2006).

C. W. Tee, K. A. Williams, R. V. Penty, I. H. White, and M. Hamacher, “Noncritical waveguide alignment for vertically coupled microring using a mode-expanded bus architecture,” IEEE Photon. Technol. Lett. 18(20), 2129–2131 (2006).
[Crossref]

2004 (2)

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally coupled buried heterostructure high-Q ring resonators,” IEEE Photon. Technol. Lett. 16(10), 2266–2268 (2004).
[Crossref]

S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

2001 (1)

P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho, “Vertically coupled microring resonators using polymer wafer bonding,” IEEE Photon. Technol. Lett. 13(1), 49–51 (2001).
[Crossref]

1997 (2)

C. Vassallo and J. M. van der Keur, “Comparison of a few transparent boundary conditions for finite-difference optical mode-solvers,” J. Lightwave Technol. 15(2), 397–402 (1997).
[Crossref]

M. Heinbach, M. Schienle, A. Schmid, B. Acklin, and G. Müller, “Low-loss bent connections for optical switches,” J. Lightwave Technol. 15(5), 833–837 (1997).
[Crossref]

1994 (1)

Absil, P. P.

P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho, “Vertically coupled microring resonators using polymer wafer bonding,” IEEE Photon. Technol. Lett. 13(1), 49–51 (2001).
[Crossref]

Acklin, B.

M. Heinbach, M. Schienle, A. Schmid, B. Acklin, and G. Müller, “Low-loss bent connections for optical switches,” J. Lightwave Technol. 15(5), 833–837 (1997).
[Crossref]

Al Asadi, M.

R. D. Mansoor, H. Sasse, M. Al Asadi, S. J. Ison, and A. P. Duffy, “Over coupled ring resonator-based add/drop filters,” IEEE J. Quantum Electron. 50(8), 598–604 (2014).
[Crossref]

Assefa, S.

Barea, L. A. M.

Barwicz, T.

Choi, S. J.

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally coupled buried heterostructure high-Q ring resonators,” IEEE Photon. Technol. Lett. 16(10), 2266–2268 (2004).
[Crossref]

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally coupled buried heterostructure high-Q ring resonators,” IEEE Photon. Technol. Lett. 16(10), 2266–2268 (2004).
[Crossref]

S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Connolly, J.

S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Dapkus, P. D.

S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally coupled buried heterostructure high-Q ring resonators,” IEEE Photon. Technol. Lett. 16(10), 2266–2268 (2004).
[Crossref]

Djordjev, K.

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally coupled buried heterostructure high-Q ring resonators,” IEEE Photon. Technol. Lett. 16(10), 2266–2268 (2004).
[Crossref]

S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Du, Y.

X. M. Lv, Y. D. Yang, L. X. Zou, H. Long, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode characteristics and optical bistability for AlGaInAs/InP microring lasers,” IEEE Photon. Technol. Lett. 26(17), 1703–1706 (2014).
[Crossref]

Duffy, A. P.

R. D. Mansoor, H. Sasse, M. Al Asadi, S. J. Ison, and A. P. Duffy, “Over coupled ring resonator-based add/drop filters,” IEEE J. Quantum Electron. 50(8), 598–604 (2014).
[Crossref]

Frateschi, N. C.

Fushimi, A.

Galarza, M.

Gill, D. M.

Green, W. M. J.

Griffel, G.

S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Hamacher, M.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47(12), 1557–1564 (2011).
[Crossref]

C. W. Tee, K. A. Williams, R. V. Penty, I. H. White, and M. Hamacher, “Noncritical waveguide alignment for vertically coupled microring using a mode-expanded bus architecture,” IEEE Photon. Technol. Lett. 18(20), 2129–2131 (2006).
[Crossref]

Hao, Y.

Heidrich, H.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47(12), 1557–1564 (2011).
[Crossref]

Heinbach, M.

M. Heinbach, M. Schienle, A. Schmid, B. Acklin, and G. Müller, “Low-loss bent connections for optical switches,” J. Lightwave Technol. 15(5), 833–837 (1997).
[Crossref]

Ho, P. T.

P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho, “Vertically coupled microring resonators using polymer wafer bonding,” IEEE Photon. Technol. Lett. 13(1), 49–51 (2001).
[Crossref]

Hryniewicz, J. V.

P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho, “Vertically coupled microring resonators using polymer wafer bonding,” IEEE Photon. Technol. Lett. 13(1), 49–51 (2001).
[Crossref]

Hu, T.

Huang, W.

Huang, Y. Z.

X. M. Lv, Y. D. Yang, L. X. Zou, H. Long, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode characteristics and optical bistability for AlGaInAs/InP microring lasers,” IEEE Photon. Technol. Lett. 26(17), 1703–1706 (2014).
[Crossref]

Ison, S. J.

R. D. Mansoor, H. Sasse, M. Al Asadi, S. J. Ison, and A. P. Duffy, “Over coupled ring resonator-based add/drop filters,” IEEE J. Quantum Electron. 50(8), 598–604 (2014).
[Crossref]

Jiang, X.

Johnson, F. G.

P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho, “Vertically coupled microring resonators using polymer wafer bonding,” IEEE Photon. Technol. Lett. 13(1), 49–51 (2001).
[Crossref]

Kapsalis, A.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47(12), 1557–1564 (2011).
[Crossref]

Khater, M.

Kiewra, E.

Lasaosa, D.

Li, Y.

Lin, W.

S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Little, B. E.

P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho, “Vertically coupled microring resonators using polymer wafer bonding,” IEEE Photon. Technol. Lett. 13(1), 49–51 (2001).
[Crossref]

Long, H.

X. M. Lv, Y. D. Yang, L. X. Zou, H. Long, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode characteristics and optical bistability for AlGaInAs/InP microring lasers,” IEEE Photon. Technol. Lett. 26(17), 1703–1706 (2014).
[Crossref]

López, O. G.

López-Amo, M.

Lv, X. M.

X. M. Lv, Y. D. Yang, L. X. Zou, H. Long, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode characteristics and optical bistability for AlGaInAs/InP microring lasers,” IEEE Photon. Technol. Lett. 26(17), 1703–1706 (2014).
[Crossref]

Mansoor, R. D.

R. D. Mansoor, H. Sasse, M. Al Asadi, S. J. Ison, and A. P. Duffy, “Over coupled ring resonator-based add/drop filters,” IEEE J. Quantum Electron. 50(8), 598–604 (2014).
[Crossref]

Menna, R.

S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

Mesaritakis, C.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47(12), 1557–1564 (2011).
[Crossref]

Müller, G.

M. Heinbach, M. Schienle, A. Schmid, B. Acklin, and G. Müller, “Low-loss bent connections for optical switches,” J. Lightwave Technol. 15(5), 833–837 (1997).
[Crossref]

Peng, Z.

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally coupled buried heterostructure high-Q ring resonators,” IEEE Photon. Technol. Lett. 16(10), 2266–2268 (2004).
[Crossref]

Penty, R. V.

C. W. Tee, K. A. Williams, R. V. Penty, and I. H. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 108–116 (2006).

C. W. Tee, K. A. Williams, R. V. Penty, I. H. White, and M. Hamacher, “Noncritical waveguide alignment for vertically coupled microring using a mode-expanded bus architecture,” IEEE Photon. Technol. Lett. 18(20), 2129–2131 (2006).
[Crossref]

Poon, J. K. S.

Qiu, C.

Reinholm, C.

Rezende, G. F. M.

Ritter, K. J.

P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho, “Vertically coupled microring resonators using polymer wafer bonding,” IEEE Photon. Technol. Lett. 13(1), 49–51 (2001).
[Crossref]

Sacher, W. D.

Sasse, H.

R. D. Mansoor, H. Sasse, M. Al Asadi, S. J. Ison, and A. P. Duffy, “Over coupled ring resonator-based add/drop filters,” IEEE J. Quantum Electron. 50(8), 598–604 (2014).
[Crossref]

Schienle, M.

M. Heinbach, M. Schienle, A. Schmid, B. Acklin, and G. Müller, “Low-loss bent connections for optical switches,” J. Lightwave Technol. 15(5), 833–837 (1997).
[Crossref]

Schmid, A.

M. Heinbach, M. Schienle, A. Schmid, B. Acklin, and G. Müller, “Low-loss bent connections for optical switches,” J. Lightwave Technol. 15(5), 833–837 (1997).
[Crossref]

Shank, S. M.

Shen, A.

Souza, M. C. M. M.

Stamataki, I.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47(12), 1557–1564 (2011).
[Crossref]

Syvridis, D.

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47(12), 1557–1564 (2011).
[Crossref]

Tanabe, T.

Tee, C. W.

C. W. Tee, K. A. Williams, R. V. Penty, and I. H. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 108–116 (2006).

C. W. Tee, K. A. Williams, R. V. Penty, I. H. White, and M. Hamacher, “Noncritical waveguide alignment for vertically coupled microring using a mode-expanded bus architecture,” IEEE Photon. Technol. Lett. 18(20), 2129–2131 (2006).
[Crossref]

Vallini, F.

van der Keur, J. M.

C. Vassallo and J. M. van der Keur, “Comparison of a few transparent boundary conditions for finite-difference optical mode-solvers,” J. Lightwave Technol. 15(2), 397–402 (1997).
[Crossref]

Vassallo, C.

C. Vassallo and J. M. van der Keur, “Comparison of a few transparent boundary conditions for finite-difference optical mode-solvers,” J. Lightwave Technol. 15(2), 397–402 (1997).
[Crossref]

Vlasov, Y. A.

White, I. H.

C. W. Tee, K. A. Williams, R. V. Penty, and I. H. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 108–116 (2006).

C. W. Tee, K. A. Williams, R. V. Penty, I. H. White, and M. Hamacher, “Noncritical waveguide alignment for vertically coupled microring using a mode-expanded bus architecture,” IEEE Photon. Technol. Lett. 18(20), 2129–2131 (2006).
[Crossref]

Wiederhecker, G. S.

Williams, K. A.

C. W. Tee, K. A. Williams, R. V. Penty, and I. H. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 108–116 (2006).

C. W. Tee, K. A. Williams, R. V. Penty, I. H. White, and M. Hamacher, “Noncritical waveguide alignment for vertically coupled microring using a mode-expanded bus architecture,” IEEE Photon. Technol. Lett. 18(20), 2129–2131 (2006).
[Crossref]

Xiao, J. L.

X. M. Lv, Y. D. Yang, L. X. Zou, H. Long, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode characteristics and optical bistability for AlGaInAs/InP microring lasers,” IEEE Photon. Technol. Lett. 26(17), 1703–1706 (2014).
[Crossref]

Yang, B.

Yang, J.

Yang, L.

Yang, Q.

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally coupled buried heterostructure high-Q ring resonators,” IEEE Photon. Technol. Lett. 16(10), 2266–2268 (2004).
[Crossref]

Yang, Y. D.

X. M. Lv, Y. D. Yang, L. X. Zou, H. Long, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode characteristics and optical bistability for AlGaInAs/InP microring lasers,” IEEE Photon. Technol. Lett. 26(17), 1703–1706 (2014).
[Crossref]

Yu, H.

Zou, L. X.

X. M. Lv, Y. D. Yang, L. X. Zou, H. Long, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode characteristics and optical bistability for AlGaInAs/InP microring lasers,” IEEE Photon. Technol. Lett. 26(17), 1703–1706 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

R. D. Mansoor, H. Sasse, M. Al Asadi, S. J. Ison, and A. P. Duffy, “Over coupled ring resonator-based add/drop filters,” IEEE J. Quantum Electron. 50(8), 598–604 (2014).
[Crossref]

A. Kapsalis, I. Stamataki, C. Mesaritakis, D. Syvridis, M. Hamacher, and H. Heidrich, “Design and experimental evaluation of active-passive integrated microring lasers: threshold current and spectral properties,” IEEE J. Quantum Electron. 47(12), 1557–1564 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. W. Tee, K. A. Williams, R. V. Penty, and I. H. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 108–116 (2006).

IEEE Photon. Technol. Lett. (5)

S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally coupled buried heterostructure high-Q ring resonators,” IEEE Photon. Technol. Lett. 16(10), 2266–2268 (2004).
[Crossref]

P. P. Absil, J. V. Hryniewicz, B. E. Little, F. G. Johnson, K. J. Ritter, and P. T. Ho, “Vertically coupled microring resonators using polymer wafer bonding,” IEEE Photon. Technol. Lett. 13(1), 49–51 (2001).
[Crossref]

S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004).
[Crossref]

C. W. Tee, K. A. Williams, R. V. Penty, I. H. White, and M. Hamacher, “Noncritical waveguide alignment for vertically coupled microring using a mode-expanded bus architecture,” IEEE Photon. Technol. Lett. 18(20), 2129–2131 (2006).
[Crossref]

X. M. Lv, Y. D. Yang, L. X. Zou, H. Long, J. L. Xiao, Y. Du, and Y. Z. Huang, “Mode characteristics and optical bistability for AlGaInAs/InP microring lasers,” IEEE Photon. Technol. Lett. 26(17), 1703–1706 (2014).
[Crossref]

J. Lightwave Technol. (2)

C. Vassallo and J. M. van der Keur, “Comparison of a few transparent boundary conditions for finite-difference optical mode-solvers,” J. Lightwave Technol. 15(2), 397–402 (1997).
[Crossref]

M. Heinbach, M. Schienle, A. Schmid, B. Acklin, and G. Müller, “Low-loss bent connections for optical switches,” J. Lightwave Technol. 15(5), 833–837 (1997).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Opt. Lett. (1)

Other (1)

Fimmwave (Photon Design), [ http://www.photond.com ].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic drawing of the proposed microring. The insets show the field distribution of the propagation modes in the bus waveguide (A), the disk bus waveguide (B), the coupling region (C1, C2) and the ring waveguide (D).
Fig. 2
Fig. 2 (a) Layer structure of the vertically phase matched cores. (b) Refractive index and normalized mode profiles of the even Φe and odd Φo supermodes of the structure.
Fig. 3
Fig. 3 Mode field distributions for TE polarization in a 2.5 um-wide passive ridge bus waveguide with (a) 100 μm and (b) 400 μm bend radius; (c) disk bus waveguide with 100 μm and (d) 400 μm bend radius.
Fig. 4
Fig. 4 (a) Step-like approximation of the circular profiles in the coupling region for coupled mode calculations. (b) Unperturbed mode distributions of the bus and ring waveguides with 100 and 80 μm curvature radii.
Fig. 5
Fig. 5 Calculation of the propagation angles for the bus and ring modes.
Fig. 6
Fig. 6 Coupling coefficient k as a function of misalignment g and ring radius Rring. A ring waveguide width wring of 2.5 μm and a bus waveguide radius Rbus of 100 μm are kept constant.
Fig. 7
Fig. 7 Coupling coefficient k as a function of misalignment g and bus radius Rbus. Ring waveguide width wring (2.5 μm) and bus waveguide radius Rbus (60 μm) are kept constant.
Fig. 8
Fig. 8 (a) Field distribution of the first order mode in the disk bus waveguide section for Rbus = 100 μm, and (b) coupling coefficient k between the fundamental ring mode and the bus first order mode as a function of misalignment g and ring radius Rring. Ring waveguide width wring (2.5 μm) and bus waveguide radius Rbus (100 μm) are kept constant
Fig. 9
Fig. 9 (a) Cross-section of the simulated structure and detail of the boundaries used in the simulation: PMC stands for perfect magnetic conductor. (b) Modal field distribution of the fundamental eigenmode of the structure. (c) Modal field distribution of the first order eigenmode of the structure.
Fig. 10
Fig. 10 (a) Simulated loss for the first order supermode of the structure as a function of bend radius for different rib widths and TE polarization. Bending loss for the structure resulting from the removal of the bus core is shown for comparison.
Fig. 11
Fig. 11 (a) First order fully guided mode of the structure obtained by etching the bus core into a broad rib waveguide. (b) Calculations show bend losses lower than 0.2 dB/90° for this mode.

Tables (1)

Tables Icon

Table 1 Theoretical FSR, FWHM and Q provided by different design parameters for the proposed microring approach. Results are shown for the double etch structure, hence a safe maximum bend loss of 0.1 dB/90° has been considered.

Metrics