Abstract

We propose an all-optical method of creating electron vortices utilizing the Kapitza-Dirac effect. This technique uses the transfer of orbital angular momentum from photons to free electrons creating electron vortex beams in the process. The laser intensities needed for this experiment can be obtained with available pulsed lasers and the resulting electron beams carrying orbital angular momentum will be particularly useful in the study of magnetic materials and chiral plasmonic structures in ultrafast electron microscopy.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intrinsic orbital angular momentum of paraxial beams with off-axis imprinted vortices

S. S. R. Oemrawsingh, E. R. Eliel, G. Nienhuis, and J. P. Woerdman
J. Opt. Soc. Am. A 21(11) 2089-2096 (2004)

Method for exploring the orbital angular momentum of an optical vortex beam with a triangular multipoint plate

Yongxin Liu, Jixiong Pu, and Baida Lü
Appl. Opt. 50(24) 4844-4847 (2011)

Terahertz vortex generation methods in rippled and vortex plasmas

Hassan Sobhani and Elham Dadar
J. Opt. Soc. Am. A 36(7) 1187-1196 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Schattschneider and J. Verbeeck, “Theory of free electron vortices,” Ultramicroscopy 111(9-10), 1461–1468 (2011).
    [Crossref] [PubMed]
  2. B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011).
    [Crossref] [PubMed]
  3. J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467(7313), 301–304 (2010).
    [Crossref] [PubMed]
  4. M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
    [Crossref] [PubMed]
  5. A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck, “Magnetic monopole field exposed by electrons,” Nat. Phys. 10(1), 26–29 (2013).
    [Crossref]
  6. L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, “Exploiting lens aberrations to create electron-vortex beams,” Phys. Rev. Lett. 111(6), 064801 (2013).
    [Crossref] [PubMed]
  7. X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Angular momentum-induced circular dichroism in non-chiral nanostructures,” Nat Commun 5, 4922 (2014).
    [Crossref] [PubMed]
  8. P. L. Kapitza and P. A. M. Dirac, “The reflection of electrons from standing light waves,” Proc. Camb. Philos. Soc. 29(02), 297–300 (1933).
    [Crossref]
  9. D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413(6852), 142–143 (2001).
    [Crossref] [PubMed]
  10. Q. Xie and D. Zhao, “Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams,” Opt. Commun. 281(1), 7–11 (2008).
    [Crossref]
  11. S. Li and Z. Wang, “Generation of optical vortex based on computer-generated holographic gratings by photolithography,” Appl. Phys. Lett. 103(14), 141110 (2013).
    [Crossref]
  12. J. Strohaber, G. Kaya, N. Kaya, N. Hart, A. A. Kolomenskii, G. G. Paulus, and H. A. Schuessler, “In situ tomography of femtosecond optical beams with a holographic knife-edge,” Opt. Express 19(15), 14321–14334 (2011).
    [Crossref] [PubMed]
  13. H. Batelaan, “Illuminating the Kapitza-Dirac effect with electron matter optics,” Rev. Mod. Phys. 79(3), 929–941 (2007).
    [Crossref]
  14. B. Barwick and H. Batelaan, “Aharonov–Bohm phase shifts induced by laser pulses,” New J. Phys. 10(8), 083036 (2008).
    [Crossref]
  15. B. Barwick, G. Gronniger, L. Yuan, S.-H. Liou, and H. Batelaan, “A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings,” J. Appl. Phys. 100(7), 074322 (2006).
    [Crossref]
  16. J. C. H. Spence, W. Qian, and M. P. Silverman, “Electron source brightness and degeneracy from Fresnel fringes in field emission point projection microscopy,” J. Vac. Sci. Technol. A 12(2), 542–547 (1994).
    [Crossref]
  17. B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9(5), 142 (2007).
    [Crossref]
  18. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
    [Crossref] [PubMed]
  19. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
    [Crossref] [PubMed]
  20. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
    [Crossref] [PubMed]
  21. L. Fallani, C. Fort, J. E. Lye, and M. Inguscio, “Bose-Einstein condensate in an optical lattice with tunable spacing: transport and static properties,” Opt. Express 13(11), 4303–4313 (2005).
    [Crossref] [PubMed]
  22. A. Schwarz and W. Rudolph, “Dispersion-compensating beam shaper for femtosecond optical vortex beams,” Opt. Lett. 33(24), 2970–2972 (2008).
    [Crossref] [PubMed]
  23. E. Quinonez, J. Handali, and B. Barwick, “Femtosecond photoelectron point projection microscope,” Rev. Sci. Instrum. 84(10), 103710 (2013).
    [Crossref] [PubMed]
  24. Y.S. Rumala, “Structured light interference due to multiple reflections in a spiral phase plate device and its propagation” Proceedings of SPIE, 8999, paper 899936, (2014).
  25. Y. S. Rumala and A. E. Leanhardt, “Multiple beam interference in spiral phase plates,” J. Opt. Soc. Am. B 30(3), 615–621 (2013).
    [Crossref]
  26. Z. S. Sacks, D. Rozas, and G. A. Swartzlander., “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15(8Issue 8), 2226–2234 (1998).
    [Crossref]
  27. G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Meth. A 691, 113–122 (2012).
    [Crossref]
  28. F. Hasselbach, “A ruggedized miniature UHV electron biprism interferometer for new fundamental experiments and applications,” Z. Phys. B 71(4), 443–449 (1988).
    [Crossref]

2014 (1)

X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Angular momentum-induced circular dichroism in non-chiral nanostructures,” Nat Commun 5, 4922 (2014).
[Crossref] [PubMed]

2013 (5)

A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck, “Magnetic monopole field exposed by electrons,” Nat. Phys. 10(1), 26–29 (2013).
[Crossref]

L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, “Exploiting lens aberrations to create electron-vortex beams,” Phys. Rev. Lett. 111(6), 064801 (2013).
[Crossref] [PubMed]

S. Li and Z. Wang, “Generation of optical vortex based on computer-generated holographic gratings by photolithography,” Appl. Phys. Lett. 103(14), 141110 (2013).
[Crossref]

E. Quinonez, J. Handali, and B. Barwick, “Femtosecond photoelectron point projection microscope,” Rev. Sci. Instrum. 84(10), 103710 (2013).
[Crossref] [PubMed]

Y. S. Rumala and A. E. Leanhardt, “Multiple beam interference in spiral phase plates,” J. Opt. Soc. Am. B 30(3), 615–621 (2013).
[Crossref]

2012 (1)

G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Meth. A 691, 113–122 (2012).
[Crossref]

2011 (3)

J. Strohaber, G. Kaya, N. Kaya, N. Hart, A. A. Kolomenskii, G. G. Paulus, and H. A. Schuessler, “In situ tomography of femtosecond optical beams with a holographic knife-edge,” Opt. Express 19(15), 14321–14334 (2011).
[Crossref] [PubMed]

P. Schattschneider and J. Verbeeck, “Theory of free electron vortices,” Ultramicroscopy 111(9-10), 1461–1468 (2011).
[Crossref] [PubMed]

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011).
[Crossref] [PubMed]

2010 (2)

J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467(7313), 301–304 (2010).
[Crossref] [PubMed]

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

2008 (3)

Q. Xie and D. Zhao, “Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams,” Opt. Commun. 281(1), 7–11 (2008).
[Crossref]

B. Barwick and H. Batelaan, “Aharonov–Bohm phase shifts induced by laser pulses,” New J. Phys. 10(8), 083036 (2008).
[Crossref]

A. Schwarz and W. Rudolph, “Dispersion-compensating beam shaper for femtosecond optical vortex beams,” Opt. Lett. 33(24), 2970–2972 (2008).
[Crossref] [PubMed]

2007 (3)

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[Crossref] [PubMed]

B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9(5), 142 (2007).
[Crossref]

H. Batelaan, “Illuminating the Kapitza-Dirac effect with electron matter optics,” Rev. Mod. Phys. 79(3), 929–941 (2007).
[Crossref]

2006 (2)

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

B. Barwick, G. Gronniger, L. Yuan, S.-H. Liou, and H. Batelaan, “A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings,” J. Appl. Phys. 100(7), 074322 (2006).
[Crossref]

2005 (1)

2001 (1)

D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413(6852), 142–143 (2001).
[Crossref] [PubMed]

1998 (1)

1996 (1)

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

1994 (1)

J. C. H. Spence, W. Qian, and M. P. Silverman, “Electron source brightness and degeneracy from Fresnel fringes in field emission point projection microscopy,” J. Vac. Sci. Technol. A 12(2), 542–547 (1994).
[Crossref]

1988 (1)

F. Hasselbach, “A ruggedized miniature UHV electron biprism interferometer for new fundamental experiments and applications,” Z. Phys. B 71(4), 443–449 (1988).
[Crossref]

1933 (1)

P. L. Kapitza and P. A. M. Dirac, “The reflection of electrons from standing light waves,” Proc. Camb. Philos. Soc. 29(02), 297–300 (1933).
[Crossref]

Aflatooni, K.

D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413(6852), 142–143 (2001).
[Crossref] [PubMed]

Aghajani-Talesh, A.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

Agrawal, A.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011).
[Crossref] [PubMed]

Allen, L.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Anderson, I. M.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011).
[Crossref] [PubMed]

Barwick, B.

E. Quinonez, J. Handali, and B. Barwick, “Femtosecond photoelectron point projection microscope,” Rev. Sci. Instrum. 84(10), 103710 (2013).
[Crossref] [PubMed]

B. Barwick and H. Batelaan, “Aharonov–Bohm phase shifts induced by laser pulses,” New J. Phys. 10(8), 083036 (2008).
[Crossref]

B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9(5), 142 (2007).
[Crossref]

B. Barwick, G. Gronniger, L. Yuan, S.-H. Liou, and H. Batelaan, “A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings,” J. Appl. Phys. 100(7), 074322 (2006).
[Crossref]

Batelaan, H.

B. Barwick and H. Batelaan, “Aharonov–Bohm phase shifts induced by laser pulses,” New J. Phys. 10(8), 083036 (2008).
[Crossref]

B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9(5), 142 (2007).
[Crossref]

H. Batelaan, “Illuminating the Kapitza-Dirac effect with electron matter optics,” Rev. Mod. Phys. 79(3), 929–941 (2007).
[Crossref]

B. Barwick, G. Gronniger, L. Yuan, S.-H. Liou, and H. Batelaan, “A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings,” J. Appl. Phys. 100(7), 074322 (2006).
[Crossref]

D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413(6852), 142–143 (2001).
[Crossref] [PubMed]

Béché, A.

L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, “Exploiting lens aberrations to create electron-vortex beams,” Phys. Rev. Lett. 111(6), 064801 (2013).
[Crossref] [PubMed]

A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck, “Magnetic monopole field exposed by electrons,” Nat. Phys. 10(1), 26–29 (2013).
[Crossref]

Carbone, F.

G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Meth. A 691, 113–122 (2012).
[Crossref]

Chandler-Smith, N.

B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9(5), 142 (2007).
[Crossref]

Clark, L.

L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, “Exploiting lens aberrations to create electron-vortex beams,” Phys. Rev. Lett. 111(6), 064801 (2013).
[Crossref] [PubMed]

Corder, C.

B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9(5), 142 (2007).
[Crossref]

de Loos, M.

G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Meth. A 691, 113–122 (2012).
[Crossref]

Dholakia, K.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Dirac, P. A. M.

P. L. Kapitza and P. A. M. Dirac, “The reflection of electrons from standing light waves,” Proc. Camb. Philos. Soc. 29(02), 297–300 (1933).
[Crossref]

Elsaesser, T.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[Crossref] [PubMed]

Fallani, L.

Fort, C.

Freimund, D. L.

D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413(6852), 142–143 (2001).
[Crossref] [PubMed]

Gronniger, G.

B. Barwick, G. Gronniger, L. Yuan, S.-H. Liou, and H. Batelaan, “A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings,” J. Appl. Phys. 100(7), 074322 (2006).
[Crossref]

Guzzinati, G.

L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, “Exploiting lens aberrations to create electron-vortex beams,” Phys. Rev. Lett. 111(6), 064801 (2013).
[Crossref] [PubMed]

Handali, J.

E. Quinonez, J. Handali, and B. Barwick, “Femtosecond photoelectron point projection microscope,” Rev. Sci. Instrum. 84(10), 103710 (2013).
[Crossref] [PubMed]

Hart, N.

Hasselbach, F.

F. Hasselbach, “A ruggedized miniature UHV electron biprism interferometer for new fundamental experiments and applications,” Z. Phys. B 71(4), 443–449 (1988).
[Crossref]

Herzing, A. A.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011).
[Crossref] [PubMed]

Hommelhoff, P.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

Inguscio, M.

Kapitza, P. L.

P. L. Kapitza and P. A. M. Dirac, “The reflection of electrons from standing light waves,” Proc. Camb. Philos. Soc. 29(02), 297–300 (1933).
[Crossref]

Kasevich, M. A.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

Kaya, G.

Kaya, N.

Kolomenskii, A. A.

Leanhardt, A. E.

Lezec, H. J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011).
[Crossref] [PubMed]

Li, S.

S. Li and Z. Wang, “Generation of optical vortex based on computer-generated holographic gratings by photolithography,” Appl. Phys. Lett. 103(14), 141110 (2013).
[Crossref]

Lienau, C.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[Crossref] [PubMed]

Liou, S.-H.

B. Barwick, G. Gronniger, L. Yuan, S.-H. Liou, and H. Batelaan, “A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings,” J. Appl. Phys. 100(7), 074322 (2006).
[Crossref]

Lubk, A.

L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, “Exploiting lens aberrations to create electron-vortex beams,” Phys. Rev. Lett. 111(6), 064801 (2013).
[Crossref] [PubMed]

Lye, J. E.

Mancini, G. F.

G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Meth. A 691, 113–122 (2012).
[Crossref]

Mansart, B.

G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Meth. A 691, 113–122 (2012).
[Crossref]

Mazilu, M.

L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, “Exploiting lens aberrations to create electron-vortex beams,” Phys. Rev. Lett. 111(6), 064801 (2013).
[Crossref] [PubMed]

McClelland, J. J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011).
[Crossref] [PubMed]

McMorran, B. J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011).
[Crossref] [PubMed]

Molina-Terriza, G.

X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Angular momentum-induced circular dichroism in non-chiral nanostructures,” Nat Commun 5, 4922 (2014).
[Crossref] [PubMed]

Padgett, M. J.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Pagano, S.

G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Meth. A 691, 113–122 (2012).
[Crossref]

Paulus, G. G.

Qian, W.

J. C. H. Spence, W. Qian, and M. P. Silverman, “Electron source brightness and degeneracy from Fresnel fringes in field emission point projection microscopy,” J. Vac. Sci. Technol. A 12(2), 542–547 (1994).
[Crossref]

Quinonez, E.

E. Quinonez, J. Handali, and B. Barwick, “Femtosecond photoelectron point projection microscope,” Rev. Sci. Instrum. 84(10), 103710 (2013).
[Crossref] [PubMed]

Ropers, C.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[Crossref] [PubMed]

Rozas, D.

Rudolph, W.

Rumala, Y. S.

Sacks, Z. S.

Schattschneider, P.

P. Schattschneider and J. Verbeeck, “Theory of free electron vortices,” Ultramicroscopy 111(9-10), 1461–1468 (2011).
[Crossref] [PubMed]

J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467(7313), 301–304 (2010).
[Crossref] [PubMed]

Schuessler, H. A.

Schulz, C. P.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[Crossref] [PubMed]

Schwarz, A.

Silverman, M. P.

J. C. H. Spence, W. Qian, and M. P. Silverman, “Electron source brightness and degeneracy from Fresnel fringes in field emission point projection microscopy,” J. Vac. Sci. Technol. A 12(2), 542–547 (1994).
[Crossref]

Simpson, N. B.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Solli, D. R.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[Crossref] [PubMed]

Sortais, Y.

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

Spence, J. C. H.

J. C. H. Spence, W. Qian, and M. P. Silverman, “Electron source brightness and degeneracy from Fresnel fringes in field emission point projection microscopy,” J. Vac. Sci. Technol. A 12(2), 542–547 (1994).
[Crossref]

Strohaber, J.

J. Strohaber, G. Kaya, N. Kaya, N. Hart, A. A. Kolomenskii, G. G. Paulus, and H. A. Schuessler, “In situ tomography of femtosecond optical beams with a holographic knife-edge,” Opt. Express 19(15), 14321–14334 (2011).
[Crossref] [PubMed]

B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9(5), 142 (2007).
[Crossref]

Swartzlander, G. A.

Tian, H.

J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467(7313), 301–304 (2010).
[Crossref] [PubMed]

Tonomura, A.

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

Uchida, M.

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

Uiterwaal, C.

B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9(5), 142 (2007).
[Crossref]

Unguris, J.

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011).
[Crossref] [PubMed]

Van Boxem, R.

A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck, “Magnetic monopole field exposed by electrons,” Nat. Phys. 10(1), 26–29 (2013).
[Crossref]

L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, “Exploiting lens aberrations to create electron-vortex beams,” Phys. Rev. Lett. 111(6), 064801 (2013).
[Crossref] [PubMed]

van der Geer, B.

G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Meth. A 691, 113–122 (2012).
[Crossref]

Van Tendeloo, G.

A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck, “Magnetic monopole field exposed by electrons,” Nat. Phys. 10(1), 26–29 (2013).
[Crossref]

Verbeeck, J.

A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck, “Magnetic monopole field exposed by electrons,” Nat. Phys. 10(1), 26–29 (2013).
[Crossref]

L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, “Exploiting lens aberrations to create electron-vortex beams,” Phys. Rev. Lett. 111(6), 064801 (2013).
[Crossref] [PubMed]

P. Schattschneider and J. Verbeeck, “Theory of free electron vortices,” Ultramicroscopy 111(9-10), 1461–1468 (2011).
[Crossref] [PubMed]

J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467(7313), 301–304 (2010).
[Crossref] [PubMed]

Vidal, X.

X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Angular momentum-induced circular dichroism in non-chiral nanostructures,” Nat Commun 5, 4922 (2014).
[Crossref] [PubMed]

Wang, Z.

S. Li and Z. Wang, “Generation of optical vortex based on computer-generated holographic gratings by photolithography,” Appl. Phys. Lett. 103(14), 141110 (2013).
[Crossref]

Xie, Q.

Q. Xie and D. Zhao, “Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams,” Opt. Commun. 281(1), 7–11 (2008).
[Crossref]

Yuan, L.

B. Barwick, G. Gronniger, L. Yuan, S.-H. Liou, and H. Batelaan, “A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings,” J. Appl. Phys. 100(7), 074322 (2006).
[Crossref]

Zambrana-Puyalto, X.

X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Angular momentum-induced circular dichroism in non-chiral nanostructures,” Nat Commun 5, 4922 (2014).
[Crossref] [PubMed]

Zhao, D.

Q. Xie and D. Zhao, “Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams,” Opt. Commun. 281(1), 7–11 (2008).
[Crossref]

Appl. Phys. Lett. (1)

S. Li and Z. Wang, “Generation of optical vortex based on computer-generated holographic gratings by photolithography,” Appl. Phys. Lett. 103(14), 141110 (2013).
[Crossref]

J. Appl. Phys. (1)

B. Barwick, G. Gronniger, L. Yuan, S.-H. Liou, and H. Batelaan, “A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings,” J. Appl. Phys. 100(7), 074322 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. A (1)

J. C. H. Spence, W. Qian, and M. P. Silverman, “Electron source brightness and degeneracy from Fresnel fringes in field emission point projection microscopy,” J. Vac. Sci. Technol. A 12(2), 542–547 (1994).
[Crossref]

Nat Commun (1)

X. Zambrana-Puyalto, X. Vidal, and G. Molina-Terriza, “Angular momentum-induced circular dichroism in non-chiral nanostructures,” Nat Commun 5, 4922 (2014).
[Crossref] [PubMed]

Nat. Phys. (1)

A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck, “Magnetic monopole field exposed by electrons,” Nat. Phys. 10(1), 26–29 (2013).
[Crossref]

Nature (3)

J. Verbeeck, H. Tian, and P. Schattschneider, “Production and application of electron vortex beams,” Nature 467(7313), 301–304 (2010).
[Crossref] [PubMed]

M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature 464(7289), 737–739 (2010).
[Crossref] [PubMed]

D. L. Freimund, K. Aflatooni, and H. Batelaan, “Observation of the Kapitza-Dirac effect,” Nature 413(6852), 142–143 (2001).
[Crossref] [PubMed]

New J. Phys. (2)

B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan, “Laser-induced ultrafast electron emission from a field emission tip,” New J. Phys. 9(5), 142 (2007).
[Crossref]

B. Barwick and H. Batelaan, “Aharonov–Bohm phase shifts induced by laser pulses,” New J. Phys. 10(8), 083036 (2008).
[Crossref]

Nucl. Instrum. Meth. A (1)

G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, “Design and implementation of a flexible beamline for fs electron diffraction experiments,” Nucl. Instrum. Meth. A 691, 113–122 (2012).
[Crossref]

Opt. Commun. (1)

Q. Xie and D. Zhao, “Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams,” Opt. Commun. 281(1), 7–11 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, “Field emission tip as a nanometer source of free electron femtosecond pulses,” Phys. Rev. Lett. 96(7), 077401 (2006).
[Crossref] [PubMed]

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[Crossref] [PubMed]

L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van Boxem, and J. Verbeeck, “Exploiting lens aberrations to create electron-vortex beams,” Phys. Rev. Lett. 111(6), 064801 (2013).
[Crossref] [PubMed]

Proc. Camb. Philos. Soc. (1)

P. L. Kapitza and P. A. M. Dirac, “The reflection of electrons from standing light waves,” Proc. Camb. Philos. Soc. 29(02), 297–300 (1933).
[Crossref]

Rev. Mod. Phys. (1)

H. Batelaan, “Illuminating the Kapitza-Dirac effect with electron matter optics,” Rev. Mod. Phys. 79(3), 929–941 (2007).
[Crossref]

Rev. Sci. Instrum. (1)

E. Quinonez, J. Handali, and B. Barwick, “Femtosecond photoelectron point projection microscope,” Rev. Sci. Instrum. 84(10), 103710 (2013).
[Crossref] [PubMed]

Science (1)

B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris, “Electron vortex beams with high quanta of orbital angular momentum,” Science 331(6014), 192–195 (2011).
[Crossref] [PubMed]

Ultramicroscopy (1)

P. Schattschneider and J. Verbeeck, “Theory of free electron vortices,” Ultramicroscopy 111(9-10), 1461–1468 (2011).
[Crossref] [PubMed]

Z. Phys. B (1)

F. Hasselbach, “A ruggedized miniature UHV electron biprism interferometer for new fundamental experiments and applications,” Z. Phys. B 71(4), 443–449 (1988).
[Crossref]

Other (1)

Y.S. Rumala, “Structured light interference due to multiple reflections in a spiral phase plate device and its propagation” Proceedings of SPIE, 8999, paper 899936, (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Cartoon of the conservation of linear and orbital angular momentum in Kapitza-Dirac scattering. The left figure shows the before and after for the scattering of two photons by an electron. Linear momentum ( ± ħk) is conserved for this standard KD scattering event, by transferring + 2ħk of momentum from the photons to the electrons. On the right hand figure the photons are carrying ± ħ of OAM, in addition to linear momentum. To conserve OAM, in the scattering event, + 2ħ of OAM must be transferred to the electron from the photons. In both scattering situations energy is conserved.
Fig. 2
Fig. 2 Schematic of proposed experimental setup. An ultrashort electron pulse is created by irradiating a field emission tip with a femtosecond pulse of light. This electron pulse travels a distance d to a collimation pinhole, where two intense femtosecond laser pulses are coincident with it. The laser pulses, carrying -lħ and + lħ amounts of OAM respectively interfere creating an optical standing wave with a fork dislocation at its center. The ultrashort electron pulse passes through the collimation slit, diffracts from the standing wave and travels a distance D to the two dimensional detector plane. The different diffraction orders carry 2nlħ of OAM, according to Eq. (3).
Fig. 3
Fig. 3 Calculation results showing predicted electron beams carrying OAM. a) Optical intensity patterns of two l = 0 optical beams. The circle is 10 microns in diameter. b) Electron diffraction pattern on detector after interaction with standing optical wave. The energy of each of the laser pulses that create the standing wave were 3 µJ. c) Simulation of the electron diffraction pattern after interfering with the plane wave electron beam (phase φ = 0). The reason this produces the spiral pattern is due to the spherical wavefronts of the diffraction peaks, which is ultimately due to the point like source of the field emission tip. The central intensity in the zeroth order only depends on the relative phase factor between the electron wave and plane wave. d) Optical intensity patterns of an l = −1 and l = + 1 optical beams. The circle is 10 microns in diameter. e) Electron diffraction pattern on detector after interaction with standing optical wave. The energy of the laser pulses that create the standing wave were 5 µJ per pulse. f) Simulation of the electron diffraction pattern after interfering with plane wave electron beam. The first order diffraction peaks, after interference with the plane wave show two spiral arms. This indicates that the first orders carry ± 2ħ of OAM. g) Optical intensity patterns of an l = −2 and l = + 2 optical beams. The circle is 10 microns in diameter. h) Electron diffraction pattern on detector after interaction with standing optical wave. The energy of the laser pulses that create the standing wave were 16 µJ. i) Simulation of the electron diffraction pattern after interfering with plane wave electron beam. The first order diffraction peaks, after interference with the plane wave show four spiral arms. On all images white indicates higher intensity of electrons or light respectively and the width of the patterns are 300 µm. The parameters for the laser pulses were all 300 fs, 515 nm and all were focused to a waist of 5 µm. The slight oval shapes and non-uniform intensity distributions of the diffracted beams shown in e and h are due to the slight oval shape in the standing wave intensity and the spherical front of the electron beams. The oval shape in the standing wave is caused by the angled interference of the laser beams and the spherical wavefront of the electron beam, due to the field emission tip source used in the calculation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U P (r,t)=  e 2 λ 2 8 π 2 m e ε 0 c 3 I(r,t)
Δϕ= 1 U P (r,t)dt
OA M e =2nl
E= E 0 exp( r 2 w 2 )exp(ilϕ) ( r 2 w ) | l |

Metrics