Abstract

In dual-beam optical traps, two counterpropagating, divergent laser beams emitted from opposing laser fibers trap and manipulate dielectric particles. We investigate the lensing effect that trapped particles have on the beams. Our approach makes use of the intrinsic coupling of a beam to the opposing fiber after having passed the trapped particle. We present measurements of this coupling signal for PDMS particles, as well as a model for its dependence on size and refractive index of the trapped particle. As a more complex sample, the coupling of inhomogeneous biological cells is measured and discussed. We show that the lensing effect is well captured by the simple ray optics approximation. The measurements reveal intricate details, such as the thermal lens effect of the beam propagation in a dual-beam trap. For a particle of known size, the model further allows to infer its refractive index simply from the coupling signal.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stability and instability for low refractive-index-contrast particle trapping in a dual-beam optical trap

Alison Huff, Charles N. Melton, Linda S. Hirst, and Jay E. Sharping
Biomed. Opt. Express 6(10) 3812-3819 (2015)

Theory of dielectric micro-sphere dynamics in a dual-beam optical trap

M. Kawano, J. T. Blakely, R. Gordon, and D. Sinton
Opt. Express 16(13) 9306-9317 (2008)

Trapping forces in a multiple-beam fiber-optic trap

Erkin Sidick, Scott D. Collins, and André Knoesen
Appl. Opt. 36(25) 6423-6433 (1997)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
    [Crossref] [PubMed]
  3. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
    [Crossref] [PubMed]
  4. G. Roosen and C. Imbert, “Optical levitation by means of two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
    [Crossref]
  5. L. Boyde, K. Chalut, and J. Guck, “Interaction of a Gaussian beam with a near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A 26(8), 1814–1826 (2009).
    [Crossref]
  6. F. Vlès, “Technique pour mésurer l’indice de réfraction d’un oeuf d’oursin en évolution,” Compt. Rend. Soc. Biol. 85, 492–495 (1921).
  7. K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
    [Crossref]
  8. N. K. Metzger, E. Wright, W. Sibbett, and K. Dholakia, “Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14(8), 3677–3687 (2006).
    [Crossref] [PubMed]
  9. K. F. A. Ross and E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16(2), 418–425 (1957).
    [Crossref] [PubMed]
  10. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. 105(37), 13730–13735 (2008).
    [Crossref] [PubMed]
  11. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
    [Crossref]
  12. B. Kemper, S. Kosmeier, P. Langehanenberg, G. v. Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
    [PubMed]
  13. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200- μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [Crossref] [PubMed]
  14. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  15. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
    [Crossref]
  16. M. Höckel, L.-C. Horn, B. Hentschel, S. Höckel, and G. Naumann, “Total mesometrial resection: High resolution nerve-sparing radical hysterectomy based on developmentally defined surgical anatomy,” Int. J. Gynecol. Cancer 13, 791–803 (2003).
    [Crossref] [PubMed]
  17. B. E. A. Saleh, Fundamentals of Photonics (Wiley, 2007).
  18. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36(1), 3–8 (1965) (1964).
    [Crossref]
  19. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
    [Crossref] [PubMed]
  20. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831 (1990).
    [Crossref]
  21. W. M. Irvine, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
    [Crossref]
  22. G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D: Appl. Phys. 11, 1167–1172 (1978).
    [Crossref]
  23. H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9(2), 385–389 (2006).
    [Crossref]
  24. D.K. Cai, A. Neyer, R. Kuckuk, and H.M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
    [Crossref]
  25. D. Erickson, D. Sinton, and D. Li, “Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems,” Lab Chip 3, 141–149 (2003).
    [Crossref]
  26. P. Brûlé-Bareil, Y. Sheng, and A. E. Chiou, “Theoretical prediction for cell deformation in the optical traps,” Proc. SPIE 7400, 74000D (2009).
    [Crossref]
  27. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: Orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
    [Crossref] [PubMed]
  28. A. K. Bryan, V. C. Hecht, W. Shen, K. Payer, W. H. Groverab, and S. R. Manalis, “Measuring single cell mass, volume, and density with dual suspended microchannel resonators,” Lab Chip 14, 569–576 (2014).
    [Crossref]
  29. M. Kalashnikov, W. Choi, Chung-Chieh Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17(22), 19674–19681 (2009).
    [Crossref] [PubMed]

2014 (1)

A. K. Bryan, V. C. Hecht, W. Shen, K. Payer, W. H. Groverab, and S. R. Manalis, “Measuring single cell mass, volume, and density with dual suspended microchannel resonators,” Lab Chip 14, 569–576 (2014).
[Crossref]

2012 (1)

2009 (3)

2008 (2)

D.K. Cai, A. Neyer, R. Kuckuk, and H.M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

2007 (4)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. v. Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

2006 (2)

N. K. Metzger, E. Wright, W. Sibbett, and K. Dholakia, “Visualization of optical binding of microparticles using a femtosecond fiber optical trap,” Opt. Express 14(8), 3677–3687 (2006).
[Crossref] [PubMed]

H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9(2), 385–389 (2006).
[Crossref]

2005 (1)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

2004 (1)

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: Orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

2003 (2)

D. Erickson, D. Sinton, and D. Li, “Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems,” Lab Chip 3, 141–149 (2003).
[Crossref]

M. Höckel, L.-C. Horn, B. Hentschel, S. Höckel, and G. Naumann, “Total mesometrial resection: High resolution nerve-sparing radical hysterectomy based on developmentally defined surgical anatomy,” Int. J. Gynecol. Cancer 13, 791–803 (2003).
[Crossref] [PubMed]

2001 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

1997 (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831 (1990).
[Crossref]

1978 (1)

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D: Appl. Phys. 11, 1167–1172 (1978).
[Crossref]

1976 (1)

G. Roosen and C. Imbert, “Optical levitation by means of two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
[Crossref]

1973 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

1968 (1)

W. M. Irvine, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[Crossref]

1965 (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36(1), 3–8 (1965) (1964).
[Crossref]

1957 (1)

K. F. A. Ross and E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16(2), 418–425 (1957).
[Crossref] [PubMed]

1921 (1)

F. Vlès, “Technique pour mésurer l’indice de réfraction d’un oeuf d’oursin en évolution,” Compt. Rend. Soc. Biol. 85, 492–495 (1921).

Abbate, G.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D: Appl. Phys. 11, 1167–1172 (1978).
[Crossref]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Badizadegan, K.

Bally, G. v.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. v. Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[PubMed]

Bernini, U.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D: Appl. Phys. 11, 1167–1172 (1978).
[Crossref]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Billing, E.

K. F. A. Ross and E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16(2), 418–425 (1957).
[Crossref] [PubMed]

Boyde, L.

Bredebusch, I.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. v. Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[PubMed]

Brûlé-Bareil, P.

P. Brûlé-Bareil, Y. Sheng, and A. E. Chiou, “Theoretical prediction for cell deformation in the optical traps,” Proc. SPIE 7400, 74000D (2009).
[Crossref]

Bryan, A. K.

A. K. Bryan, V. C. Hecht, W. Shen, K. Payer, W. H. Groverab, and S. R. Manalis, “Measuring single cell mass, volume, and density with dual suspended microchannel resonators,” Lab Chip 14, 569–576 (2014).
[Crossref]

Cabrera, H.

H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9(2), 385–389 (2006).
[Crossref]

Cai, D.K.

D.K. Cai, A. Neyer, R. Kuckuk, and H.M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Castellanos, Y.

H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9(2), 385–389 (2006).
[Crossref]

Chachisvilis, M.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: Orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Chalut, K.

Chiou, A. E.

P. Brûlé-Bareil, Y. Sheng, and A. E. Chiou, “Theoretical prediction for cell deformation in the optical traps,” Proc. SPIE 7400, 74000D (2009).
[Crossref]

Choi, W.

M. Kalashnikov, W. Choi, Chung-Chieh Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17(22), 19674–19681 (2009).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Dasari, R. R.

Dholakia, K.

Diez-Silva, M.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Diver, J.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: Orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Domschke, W.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. v. Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[PubMed]

Ebert, S.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Erickson, D.

D. Erickson, D. Sinton, and D. Li, “Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems,” Lab Chip 3, 141–149 (2003).
[Crossref]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Feld, M. S.

M. Kalashnikov, W. Choi, Chung-Chieh Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17(22), 19674–19681 (2009).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831 (1990).
[Crossref]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831 (1990).
[Crossref]

Foja, C.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

Franze, K.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

Giessen, H.

Gissibl, T.

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36(1), 3–8 (1965) (1964).
[Crossref]

Grosche, J.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

Groverab, W. H.

A. K. Bryan, V. C. Hecht, W. Shen, K. Payer, W. H. Groverab, and S. R. Manalis, “Measuring single cell mass, volume, and density with dual suspended microchannel resonators,” Lab Chip 14, 569–576 (2014).
[Crossref]

Guck, J.

L. Boyde, K. Chalut, and J. Guck, “Interaction of a Gaussian beam with a near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A 26(8), 1814–1826 (2009).
[Crossref]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Hagen, N.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: Orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Hale, G. M.

Hecht, V. C.

A. K. Bryan, V. C. Hecht, W. Shen, K. Payer, W. H. Groverab, and S. R. Manalis, “Measuring single cell mass, volume, and density with dual suspended microchannel resonators,” Lab Chip 14, 569–576 (2014).
[Crossref]

Heise, H.M.

D.K. Cai, A. Neyer, R. Kuckuk, and H.M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Hentschel, B.

M. Höckel, L.-C. Horn, B. Hentschel, S. Höckel, and G. Naumann, “Total mesometrial resection: High resolution nerve-sparing radical hysterectomy based on developmentally defined surgical anatomy,” Int. J. Gynecol. Cancer 13, 791–803 (2003).
[Crossref] [PubMed]

Höckel, M.

M. Höckel, L.-C. Horn, B. Hentschel, S. Höckel, and G. Naumann, “Total mesometrial resection: High resolution nerve-sparing radical hysterectomy based on developmentally defined surgical anatomy,” Int. J. Gynecol. Cancer 13, 791–803 (2003).
[Crossref] [PubMed]

Höckel, S.

M. Höckel, L.-C. Horn, B. Hentschel, S. Höckel, and G. Naumann, “Total mesometrial resection: High resolution nerve-sparing radical hysterectomy based on developmentally defined surgical anatomy,” Int. J. Gynecol. Cancer 13, 791–803 (2003).
[Crossref] [PubMed]

Horn, L.-C.

M. Höckel, L.-C. Horn, B. Hentschel, S. Höckel, and G. Naumann, “Total mesometrial resection: High resolution nerve-sparing radical hysterectomy based on developmentally defined surgical anatomy,” Int. J. Gynecol. Cancer 13, 791–803 (2003).
[Crossref] [PubMed]

Imbert, C.

G. Roosen and C. Imbert, “Optical levitation by means of two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
[Crossref]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831 (1990).
[Crossref]

Irvine, W. M.

W. M. Irvine, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[Crossref]

Kalashnikov, M.

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Kedenburg, S.

Kemper, B.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. v. Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[PubMed]

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Kosmeier, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. v. Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[PubMed]

Kuckuk, R.

D.K. Cai, A. Neyer, R. Kuckuk, and H.M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Langehanenberg, P.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. v. Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[PubMed]

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36(1), 3–8 (1965) (1964).
[Crossref]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Li, D.

D. Erickson, D. Sinton, and D. Li, “Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems,” Lab Chip 3, 141–149 (2003).
[Crossref]

Lincoln, B.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Lykotrafitis, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Manalis, S. R.

A. K. Bryan, V. C. Hecht, W. Shen, K. Payer, W. H. Groverab, and S. R. Manalis, “Measuring single cell mass, volume, and density with dual suspended microchannel resonators,” Lab Chip 14, 569–576 (2014).
[Crossref]

Marcano, A.

H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9(2), 385–389 (2006).
[Crossref]

Marchand, P.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: Orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Metzger, N. K.

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36(1), 3–8 (1965) (1964).
[Crossref]

Naumann, G.

M. Höckel, L.-C. Horn, B. Hentschel, S. Höckel, and G. Naumann, “Total mesometrial resection: High resolution nerve-sparing radical hysterectomy based on developmentally defined surgical anatomy,” Int. J. Gynecol. Cancer 13, 791–803 (2003).
[Crossref] [PubMed]

Neyer, A.

D.K. Cai, A. Neyer, R. Kuckuk, and H.M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Park, Y.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Payer, K.

A. K. Bryan, V. C. Hecht, W. Shen, K. Payer, W. H. Groverab, and S. R. Manalis, “Measuring single cell mass, volume, and density with dual suspended microchannel resonators,” Lab Chip 14, 569–576 (2014).
[Crossref]

Popescu, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36(1), 3–8 (1965) (1964).
[Crossref]

Querry, M. R.

Ragozzino, E.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D: Appl. Phys. 11, 1167–1172 (1978).
[Crossref]

Reichenbach, A.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Roosen, G.

G. Roosen and C. Imbert, “Optical levitation by means of two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
[Crossref]

Ross, K. F. A.

K. F. A. Ross and E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16(2), 418–425 (1957).
[Crossref] [PubMed]

Saleh, B. E. A.

B. E. A. Saleh, Fundamentals of Photonics (Wiley, 2007).

Schild, D.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

Schinkinger, S.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Schnekenburger, J.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. v. Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[PubMed]

Shen, W.

A. K. Bryan, V. C. Hecht, W. Shen, K. Payer, W. H. Groverab, and S. R. Manalis, “Measuring single cell mass, volume, and density with dual suspended microchannel resonators,” Lab Chip 14, 569–576 (2014).
[Crossref]

Sheng, Y.

P. Brûlé-Bareil, Y. Sheng, and A. E. Chiou, “Theoretical prediction for cell deformation in the optical traps,” Proc. SPIE 7400, 74000D (2009).
[Crossref]

Sibbett, W.

Sinton, D.

D. Erickson, D. Sinton, and D. Li, “Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems,” Lab Chip 3, 141–149 (2003).
[Crossref]

Skatchkov, S. N.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

Somma, F.

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D: Appl. Phys. 11, 1167–1172 (1978).
[Crossref]

Sung, Y.

Suresh, S.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Travis, K.

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15(23), 15493–15499 (2007).
[Crossref] [PubMed]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

Uckermann, O.

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Vieweg, M.

Vlès, F.

F. Vlès, “Technique pour mésurer l’indice de réfraction d’un oeuf d’oursin en évolution,” Compt. Rend. Soc. Biol. 85, 492–495 (1921).

Watson, D.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: Orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Whinnery, J. R.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36(1), 3–8 (1965) (1964).
[Crossref]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Wright, E.

Yu, Chung-Chieh

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831 (1990).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831 (1990).
[Crossref]

Biophys. J. (3)

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: Orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Compt. Rend. Soc. Biol. (1)

F. Vlès, “Technique pour mésurer l’indice de réfraction d’un oeuf d’oursin en évolution,” Compt. Rend. Soc. Biol. 85, 492–495 (1921).

Condens. Matter Phys. (1)

H. Cabrera, A. Marcano, and Y. Castellanos, “Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry,” Condens. Matter Phys. 9(2), 385–389 (2006).
[Crossref]

Icarus (1)

W. M. Irvine, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[Crossref]

Int. J. Gynecol. Cancer (1)

M. Höckel, L.-C. Horn, B. Hentschel, S. Höckel, and G. Naumann, “Total mesometrial resection: High resolution nerve-sparing radical hysterectomy based on developmentally defined surgical anatomy,” Int. J. Gynecol. Cancer 13, 791–803 (2003).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36(1), 3–8 (1965) (1964).
[Crossref]

J. Biomed. Opt. (1)

B. Kemper, S. Kosmeier, P. Langehanenberg, G. v. Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12(5), 054009 (2007).
[PubMed]

J. Gen. Microbiol. (1)

K. F. A. Ross and E. Billing, “The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements,” J. Gen. Microbiol. 16(2), 418–425 (1957).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

G. Abbate, U. Bernini, E. Ragozzino, and F. Somma, “The temperature dependence of the refractive index of water,” J. Phys. D: Appl. Phys. 11, 1167–1172 (1978).
[Crossref]

Lab Chip (2)

D. Erickson, D. Sinton, and D. Li, “Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems,” Lab Chip 3, 141–149 (2003).
[Crossref]

A. K. Bryan, V. C. Hecht, W. Shen, K. Payer, W. H. Groverab, and S. R. Manalis, “Measuring single cell mass, volume, and density with dual suspended microchannel resonators,” Lab Chip 14, 569–576 (2014).
[Crossref]

Meas. Sci. Technol. (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8, 601–605 (1997).
[Crossref]

Nat. Meth. (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Meth. 4, 717–719 (2007).
[Crossref]

Opt. Express (3)

Opt. Mater. (1)

D.K. Cai, A. Neyer, R. Kuckuk, and H.M. Heise, “Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication,” Opt. Mater. 30(7), 1157–1161 (2008).
[Crossref]

Opt. Mater. Express (1)

Phys. Lett. (1)

G. Roosen and C. Imbert, “Optical levitation by means of two horizontal laser beams: A theoretical and experimental study,” Phys. Lett. 59A, 6–8 (1976).
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Proc. Natl. Acad. Sci. (2)

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

K. Franze, J. Grosche, S. N. Skatchkov, S. Schinkinger, C. Foja, D. Schild, O. Uckermann, K. Travis, A. Reichenbach, and J. Guck, “Müller cells are living optical fibers in the vertebrate retina,” Proc. Natl. Acad. Sci. 104, 8287–8292 (2007).
[Crossref]

Proc. SPIE (1)

P. Brûlé-Bareil, Y. Sheng, and A. E. Chiou, “Theoretical prediction for cell deformation in the optical traps,” Proc. SPIE 7400, 74000D (2009).
[Crossref]

Other (1)

B. E. A. Saleh, Fundamentals of Photonics (Wiley, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup. Top: Between the stretcher chamber and the lasers, 99:1 fiber splices are used to redirect 1% of the light coming from the respective opposite laser onto photo diodes. Bottom: Close-up sketch showing the dimensions of the elements in the trapping region. For reasons of clarity, just one beam (coming from the left fiber end) is shown.
Fig. 2
Fig. 2 Overview of effects in light propagation in a dual-beam trap treated in this study; note that the strengths of the effects are exaggerated: (a) a beam - here coming from the left fiber - diverges as it propagates through the chamber, (b) due to laser absorption, a thermal lens emerges, increasing beam divergence, (c) a trapped particle has a lens-like, focusing effect on the beam, (d) a gravitational displacement from the optical axis diverts the beam.
Fig. 3
Fig. 3 (a): Due to the termal lens effect, the core coupling is sub-linear with respect to the laser power. The effect is much stronger for ethanol than for water. (b): Simulation results for beam propagation with and without thermal lens effect; for 2*1 W stretching power in water (only one beam shown). The increased beam divergence merely influences the beam width in the middle of the trap, while the coupling of the beam into the opposite fiber is significantly altered.
Fig. 4
Fig. 4 (a): The coupling can be thought of as the overlap of the left and right beam in the middle of the trap (see text). A phase mask between the two beams increases this overlap by making the wavefronts match better. (b): Calculated core coupling over particle radius for different refractive index differences. The dotted line shows the core coupling curve for the core/shell model with Δnshell = 0.03, Δncore = 0.005 and R core = 4 5 R, which has a pronouncedly higher tail, allowing for discrimination between simple and more complex architectures of the trapped particles.
Fig. 5
Fig. 5 (a): Equilibrium gravitational displacement of trapped particles with an excess density of Δρ = 190 kg/m3 at a trapping power of 2 * 0.1 W. The inset shows the corresponding gradient (trapping) force exerted by the lasers. Because the trapping force decreases with particle size for R ≳ 9 μm, displacements become important for particles bigger than that. (b): Overview of modeled core coupling under the influence of the different effects (cf. Fig. 2) discussed in this study. Thermal lens effect for 2 * 0.1 W trapping power in ethanol. Gravitational displacements taken from Fig. 5(a). While the thermal lens and the displacements slightly influence height and position of the peak and the tail, the coupling peak is distinctly wider in the core/shell phase mask model.
Fig. 6
Fig. 6 (a): Dependence of the fiber coupling of PDMS beads on bead size. Crosses are experimental values. The error bars indicate the bead size uncertainty u(R) = 0.2 μm; this is estimated by the effect that repeated trapping of the same bead under slightly changed microscope focus has on the detected contour. The red line shows the prediction of the presented model, using a value of Δn = 0.0335 for the refractive index. The green dashed line shows the prediction of the simple model without thermal lens effect and gravity displacement correction, which is insufficient. The inset shows an example of a PDMS bead with its contour masked red as given by the edge detection. Scale bar is 10 μm. (b): The fiber coupling signal during a cell stretch process in an optical stretcher. After the laser switches to stretch power, the coupling signal decreases because thermal equilibration is not completely reached; further, the deformation of the cell increases the signal due to the increasing curvature of its surfaces. After the laser switches back to trapping power, the relaxations of the thermal lens and of the cell deformation overlap again.
Fig. 7
Fig. 7 (a): Core coupling of 2 primary cell samples. Sample 1 is typical of many primary and cell lines measured. The core/shell model describes the averaged curve shape, while the homogeneous model cannot (not shown here). Note that in sample 2, some cells (marked by the ellipse) have distinctly lower coupling values. The inset shows a phase contrast sample image of a cell trapped in the stretcher, with the detected edge; scale bar is 10 μm. (b): Fitted refractive index (shell) values (relative to the medium), assuming a constant core value of Δncore = 0.007. In this measurement, there seems to be a subpopulation of possibly apoptotic cells in sample 2 that has a distinctly lower refractive index.

Tables (1)

Tables Icon

Table 1 Dimensions of the optical elements in the trapping region

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

q ( z ) = z + i z R = ( 1 R ( z ) i λ π ω 2 ( z ) ) 1
M medium 1 p = ( 1 z 0 1 ) , M medium 1 medium 2 i = ( 1 0 0 n 1 n 2 )
q 1 = * M med p * M med glass i * M glass p * M glass gel i * M glass p * M gel fiber i * q 0
u ( r , z ) = 2 π 1 ω exp ( r 2 ω 2 ( z ) i k r 2 2 R ( z ) )
C = | u beam ( z end ) u opposite ( z end ) * d S | 2
D TL = 1 f = α ω 2 π κ d n d T P l = d TL P l
M lens = ( 1 0 D TL 1 )
M med p z M 1 μ m p * M lens
C = | u beam ( z end ) T + z middle T z middle u opposite ( z end ) d S | 2
= | T z middle u beam ( z end ) T z middle u opposite ( z end ) d S | 2
= | u beam ( z middle ) u opposite ( z middle ) * d S | 2
C = | u beam ( z middle ) Q u opposite ( z middle ) * d S | 2
Q simple ( Δ n , R ) = { exp ( i k Δ n R 2 r 2 ) if r R 0 else
z R = π R 2 λ 2 R
R 2 λ π 2 3 μ m
R focus = Δ n * z 4 μ m
Q core / shell = Q simple ( Δ n shell , R shell ) * Q simple ( Δ n core , R core )
Δ n PDMS = 0.0335 ± 0.003
Δ n total = Δ n shell + ( R core R shell ) 3 Δ n core = 0.032

Metrics