Abstract

By considering the rapid change of standing-wave electric-field and assuming the interface defect distribution, an improved model is developed to analyze the defect density distribution and assess the damage performance of high-reflective coatings. Two kinds of high-reflective coatings deposited by e-beam evaporation (EBE) and ion beam sputtering (IBS) techniques are analyzed with this method. The lower overall damage threshold is the major feature for the coatings deposited by IBS method according to the defect parameters extracted from the model. Typical damage morphologies of coatings are also measured and analyzed. The assumption of interface defects is supported by the damage behavior. The damage mechanisms of two high-reflective coatings are attributed to the formation of molten pool and mechanical ejection. The influence of the incident angle on the damage probability is also considered and numerically calculated. The defect analysis model improved here is suitable for high-reflective coatings.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigations on single and multiple pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 1064 nm

Wenwen Liu, Chaoyang Wei, Jianbo Wu, Zhenkun Yu, Hui Cui, Kui Yi, and Jianda Shao
Opt. Express 21(19) 22476-22487 (2013)

Parametric analysis of damage probability: a tool to identify weak layers within multilayer coatings

Linas Smalakys, Gintarė Batavičiūtė, Egidijus Pupka, and Andrius Melninkaitis
Appl. Opt. 54(10) 2953-2962 (2015)

Impact of laser-contaminant interaction on the performance of the protective capping layer of 1 ω high-reflection mirror coatings

S. R. Qiu, M. A. Norton, R. N. Raman, A. M. Rubenchik, C. D. Boley, A. Rigatti, P. B. Mirkarimi, C. J. Stolz, and M. J. Matthews
Appl. Opt. 54(29) 8607-8616 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
    [Crossref]
  2. S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
    [Crossref] [PubMed]
  3. T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
    [Crossref] [PubMed]
  4. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
    [Crossref]
  5. Z. K. Yu, H. B. He, X. Li, H. J. Qi, and W. W. Liu, “Stress mechanism of pulsed laser-driven damage in thin film under nanosecond ultraviolet laser irradiation,” Chin. Opt. Lett. 11(7), 073101 (2013).
    [Crossref]
  6. Z. L. Wu, C. J. Stolz, S. C. Weakley, J. D. Hughes, and Q. Zhao, “Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects,” Appl. Opt. 40(12), 1897–1906 (2001).
    [Crossref] [PubMed]
  7. B. Bertussi, J. Y. Natoli, and M. Commandré, “3D photothermal microscope for the detection of nano-sized absorbing defects responsible for laser-induced damage initiation,” Proc. SPIE 5647, 394–402 (2005).
    [Crossref]
  8. L. M. Sheehan, M. Kozlowski, and D. W. Camp, “Application of Total Internal Reflection Microscopy for laser damage studies on fused silica,” Proc. SPIE 3244, 282–295 (1998).
    [Crossref]
  9. S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
    [Crossref]
  10. N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
    [Crossref] [PubMed]
  11. M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
    [Crossref]
  12. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [Crossref] [PubMed]
  13. G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
    [Crossref] [PubMed]
  14. L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
    [Crossref]
  15. H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
    [Crossref]
  16. J. Liu, W. L. Zhang, H. Cui, J. Sun, H. Li, K. Yi, and M. P. Zhu, “Study on high-reflective coatings of different designs at 532 nm,” Chin. Opt. Lett. 12(8), 083101 (2014).
    [Crossref]
  17. C. J. Stolz, S. Hafeman, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47(13), C162–C166 (2008).
    [Crossref] [PubMed]
  18. C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
    [Crossref]
  19. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  20. Z. K. Yu, H. B. He, W. Sun, H. J. Qi, M. H. Yang, Q. L. Xiao, and M. P. Zhu, “Damage threshold influenced by the high absorption defect at the film-substrate interface under ultraviolet laser irradiation,” Opt. Lett. 38(21), 4308–4311 (2013).
    [Crossref] [PubMed]
  21. M. P. Zhu, K. Yi, D. W. Li, X. F. Liu, H. J. Qi, and J. D. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
    [Crossref]
  22. H. Krol, C. Amra, C. Grèzes-Besset, and M. Commandré, “Effect of electric field distribution on the laser damage probability curves of multilayer coatings,” Proc. SPIE 6720, 67200V (2007).
    [Crossref]
  23. P. A. Temple, “Measurement of thin-film optical absorption at the air-film interface within the film and at the film-substrate interface,” Appl. Phys. Lett. 34(10), 677 (1979).
    [Crossref]
  24. J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
    [Crossref]
  25. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, 3rd, 2001).
  26. W. Sun, H. Qi, Z. Fang, Z. Yu, K. Yi, and J. Shao, “1064nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica,” Appl. Surf. Sci. 309, 79–84 (2014).
    [Crossref]

2014 (5)

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

J. Liu, W. L. Zhang, H. Cui, J. Sun, H. Li, K. Yi, and M. P. Zhu, “Study on high-reflective coatings of different designs at 532 nm,” Chin. Opt. Lett. 12(8), 083101 (2014).
[Crossref]

M. P. Zhu, K. Yi, D. W. Li, X. F. Liu, H. J. Qi, and J. D. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

W. Sun, H. Qi, Z. Fang, Z. Yu, K. Yi, and J. Shao, “1064nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica,” Appl. Surf. Sci. 309, 79–84 (2014).
[Crossref]

2013 (5)

2012 (2)

2011 (2)

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2010 (1)

2009 (1)

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

2008 (2)

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[Crossref]

C. J. Stolz, S. Hafeman, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47(13), C162–C166 (2008).
[Crossref] [PubMed]

2007 (1)

H. Krol, C. Amra, C. Grèzes-Besset, and M. Commandré, “Effect of electric field distribution on the laser damage probability curves of multilayer coatings,” Proc. SPIE 6720, 67200V (2007).
[Crossref]

2005 (3)

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[Crossref]

B. Bertussi, J. Y. Natoli, and M. Commandré, “3D photothermal microscope for the detection of nano-sized absorbing defects responsible for laser-induced damage initiation,” Proc. SPIE 5647, 394–402 (2005).
[Crossref]

2001 (1)

1998 (1)

L. M. Sheehan, M. Kozlowski, and D. W. Camp, “Application of Total Internal Reflection Microscopy for laser damage studies on fused silica,” Proc. SPIE 3244, 282–295 (1998).
[Crossref]

1979 (1)

P. A. Temple, “Measurement of thin-film optical absorption at the air-film interface within the film and at the film-substrate interface,” Appl. Phys. Lett. 34(10), 677 (1979).
[Crossref]

Adams, J. J.

C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
[Crossref]

Amra, C.

H. Krol, C. Amra, C. Grèzes-Besset, and M. Commandré, “Effect of electric field distribution on the laser damage probability curves of multilayer coatings,” Proc. SPIE 6720, 67200V (2007).
[Crossref]

Bataviciute, G.

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
[Crossref] [PubMed]

Baxamusa, S.

Bertussi, B.

B. Bertussi, J. Y. Natoli, and M. Commandré, “3D photothermal microscope for the detection of nano-sized absorbing defects responsible for laser-induced damage initiation,” Proc. SPIE 5647, 394–402 (2005).
[Crossref]

Bittle, W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Bude, J.

Bude, J. D.

Camp, D. W.

L. M. Sheehan, M. Kozlowski, and D. W. Camp, “Application of Total Internal Reflection Microscopy for laser damage studies on fused silica,” Proc. SPIE 3244, 282–295 (1998).
[Crossref]

Capoulade, J.

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[Crossref]

Carr, C. W.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Cheng, X. B.

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

Commandré, M.

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[Crossref]

H. Krol, C. Amra, C. Grèzes-Besset, and M. Commandré, “Effect of electric field distribution on the laser damage probability curves of multilayer coatings,” Proc. SPIE 6720, 67200V (2007).
[Crossref]

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

B. Bertussi, J. Y. Natoli, and M. Commandré, “3D photothermal microscope for the detection of nano-sized absorbing defects responsible for laser-induced damage initiation,” Proc. SPIE 5647, 394–402 (2005).
[Crossref]

Cui, H.

Fang, Z.

W. Sun, H. Qi, Z. Fang, Z. Yu, K. Yi, and J. Shao, “1064nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica,” Appl. Surf. Sci. 309, 79–84 (2014).
[Crossref]

Feit, M. D.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Folta, J. A.

C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
[Crossref]

Gallais, L.

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[Crossref]

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Grèzes-Besset, C.

H. Krol, C. Amra, C. Grèzes-Besset, and M. Commandré, “Effect of electric field distribution on the laser damage probability curves of multilayer coatings,” Proc. SPIE 6720, 67200V (2007).
[Crossref]

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Grigas, P.

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
[Crossref] [PubMed]

Hafeman, S.

He, H. B.

Honig, J.

Hughes, J. D.

Ji, Y. Q.

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

Kozlowski, M.

L. M. Sheehan, M. Kozlowski, and D. W. Camp, “Application of Total Internal Reflection Microscopy for laser damage studies on fused silica,” Proc. SPIE 3244, 282–295 (1998).
[Crossref]

Krol, H.

H. Krol, C. Amra, C. Grèzes-Besset, and M. Commandré, “Effect of electric field distribution on the laser damage probability curves of multilayer coatings,” Proc. SPIE 6720, 67200V (2007).
[Crossref]

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Kupinski, P.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Laurence, T. A.

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Li, D. W.

M. P. Zhu, K. Yi, D. W. Li, X. F. Liu, H. J. Qi, and J. D. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Li, H.

Li, X.

Liu, H. S.

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

Liu, J.

Liu, W. W.

Liu, X. F.

M. P. Zhu, K. Yi, D. W. Li, X. F. Liu, H. J. Qi, and J. D. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Lu, J. T.

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

Ly, S.

Matthews, M. J.

Melninkaitis, A.

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
[Crossref] [PubMed]

Menapace, J.

Menapace, J. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Menoni, C.

C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
[Crossref]

Menor, M. G.

C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
[Crossref]

Miller, P. E.

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Mirkarimi, P. B.

C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
[Crossref]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Natoli, J. Y.

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[Crossref]

B. Bertussi, J. Y. Natoli, and M. Commandré, “3D photothermal microscope for the detection of nano-sized absorbing defects responsible for laser-induced damage initiation,” Proc. SPIE 5647, 394–402 (2005).
[Crossref]

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Oliver, J. B.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Papernov, S.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[Crossref]

Patel, D.

C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
[Crossref]

Pistor, T. V.

Qi, H.

W. Sun, H. Qi, Z. Fang, Z. Yu, K. Yi, and J. Shao, “1064nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica,” Appl. Surf. Sci. 309, 79–84 (2014).
[Crossref]

Qi, H. J.

Rubenchik, A. M.

Schmid, A. W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[Crossref]

Shao, J.

W. Sun, H. Qi, Z. Fang, Z. Yu, K. Yi, and J. Shao, “1064nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica,” Appl. Surf. Sci. 309, 79–84 (2014).
[Crossref]

Shao, J. D.

M. P. Zhu, K. Yi, D. W. Li, X. F. Liu, H. J. Qi, and J. D. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Sheehan, L. M.

L. M. Sheehan, M. Kozlowski, and D. W. Camp, “Application of Total Internal Reflection Microscopy for laser damage studies on fused silica,” Proc. SPIE 3244, 282–295 (1998).
[Crossref]

Shen, N.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

M. J. Matthews, N. Shen, J. Honig, J. D. Bude, and A. M. Rubenchik, “Phase modulation and morphological evolution associated with surface-bound particle ablation,” J. Opt. Soc. Am. B 30(12), 3233–3242 (2013).
[Crossref]

T. A. Laurence, J. D. Bude, S. Ly, N. Shen, and M. D. Feit, “Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2),” Opt. Express 20(10), 11561–11573 (2012).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Smalakys, L.

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
[Crossref] [PubMed]

Soufli, R.

C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
[Crossref]

Steele, R.

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Stolz, C. J.

Sun, J.

Sun, W.

W. Sun, H. Qi, Z. Fang, Z. Yu, K. Yi, and J. Shao, “1064nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica,” Appl. Surf. Sci. 309, 79–84 (2014).
[Crossref]

Z. K. Yu, H. B. He, W. Sun, H. J. Qi, M. H. Yang, Q. L. Xiao, and M. P. Zhu, “Damage threshold influenced by the high absorption defect at the film-substrate interface under ultraviolet laser irradiation,” Opt. Lett. 38(21), 4308–4311 (2013).
[Crossref] [PubMed]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Tait, A.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Temple, P. A.

P. A. Temple, “Measurement of thin-film optical absorption at the air-film interface within the film and at the film-substrate interface,” Appl. Phys. Lett. 34(10), 677 (1979).
[Crossref]

Teslich, N. E.

C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
[Crossref]

Wang, Z. S.

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

Weakley, S. C.

Wolfe, J. E.

C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
[Crossref]

Wong, L.

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Wu, Z. L.

Xiao, Q. L.

Yang, M. H.

Yi, K.

M. P. Zhu, K. Yi, D. W. Li, X. F. Liu, H. J. Qi, and J. D. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

W. Sun, H. Qi, Z. Fang, Z. Yu, K. Yi, and J. Shao, “1064nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica,” Appl. Surf. Sci. 309, 79–84 (2014).
[Crossref]

J. Liu, W. L. Zhang, H. Cui, J. Sun, H. Li, K. Yi, and M. P. Zhu, “Study on high-reflective coatings of different designs at 532 nm,” Chin. Opt. Lett. 12(8), 083101 (2014).
[Crossref]

Yu, Z.

W. Sun, H. Qi, Z. Fang, Z. Yu, K. Yi, and J. Shao, “1064nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica,” Appl. Surf. Sci. 309, 79–84 (2014).
[Crossref]

Yu, Z. K.

Zhang, W. L.

Zhao, Q.

Zhu, M. P.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. A. Temple, “Measurement of thin-film optical absorption at the air-film interface within the film and at the film-substrate interface,” Appl. Phys. Lett. 34(10), 677 (1979).
[Crossref]

Appl. Surf. Sci. (1)

W. Sun, H. Qi, Z. Fang, Z. Yu, K. Yi, and J. Shao, “1064nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica,” Appl. Surf. Sci. 309, 79–84 (2014).
[Crossref]

Chin. Opt. Lett. (2)

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

J. Appl. Phys. (3)

S. Papernov and A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[Crossref]

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

H. Krol, L. Gallais, C. Grèzes-Besset, J. Y. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[Crossref]

M. P. Zhu, K. Yi, D. W. Li, X. F. Liu, H. J. Qi, and J. D. Shao, “Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings,” Opt. Commun. 319, 75–79 (2014).
[Crossref]

Opt. Eng. (1)

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (5)

C. J. Stolz, J. E. Wolfe, P. B. Mirkarimi, J. A. Folta, J. J. Adams, M. G. Menor, N. E. Teslich, R. Soufli, C. Menoni, and D. Patel, “Defect insensitive 100 J/cm2 multilayer mirror coating process,” Proc. SPIE 8885, 888502 (2013).
[Crossref]

H. Krol, C. Amra, C. Grèzes-Besset, and M. Commandré, “Effect of electric field distribution on the laser damage probability curves of multilayer coatings,” Proc. SPIE 6720, 67200V (2007).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

B. Bertussi, J. Y. Natoli, and M. Commandré, “3D photothermal microscope for the detection of nano-sized absorbing defects responsible for laser-induced damage initiation,” Proc. SPIE 5647, 394–402 (2005).
[Crossref]

L. M. Sheehan, M. Kozlowski, and D. W. Camp, “Application of Total Internal Reflection Microscopy for laser damage studies on fused silica,” Proc. SPIE 3244, 282–295 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

G. Batavičiutė, P. Grigas, L. Smalakys, and A. Melninkaitis, “Revision of laser-induced damage threshold evaluation from damage probability data,” Rev. Sci. Instrum. 84(4), 045108 (2013).
[Crossref] [PubMed]

Other (1)

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, 3rd, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Normalized electric field intensity (squared) in the coatings for (a) sample A and (b) sample B.
Fig. 2
Fig. 2 (a)Damage probability curve and (b) defect distribution of two samples extracted from the improved model.
Fig. 3
Fig. 3 Damage morphologies of (a) sample A at F = 15.0 J/cm2 with (b) high magnification local pits and (c) sample B at F = 22.8 J/cm2.
Fig. 4
Fig. 4 Damage morphologies of (a) sample A at F = 9.9 J/cm2 and other typical damage morphologies of sample B: (b), (c), (d) at F = 22.8 J/cm2.
Fig. 5
Fig. 5 Numerical damage probability curve calculated with the same g(T) for sample B under different incident angles.

Tables (2)

Tables Icon

Table 1 Sample parameters

Tables Icon

Table 2 Fitting parameters extracted from the model

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P(F)=1exp[N(F)].
g(T)= d 2π ΔT/2 exp[ 1 2 ( T T 0 ΔT/2 ) 2 ].
N( F )= 0 F g(T) S T ( F )dT ,
S T ( F )= S eff ln( F T ),
N(F)=ρV(F),
V(F)= 0 z max S eff ln[ F|E(z) | 2 T ]dz ,
N(F)= i ρ i V i (F) ,
N( F k )= 0 F k g(T) S T (F)dT ,
N(F)= k N( F k ) .

Metrics