Abstract

We study the impact of interface roughness on the operation of mid-IR and THz quantum cascade lasers. Particular emphasis is given towards the differences between the Gaussian and exponential roughness distribution functions, for which we present results from simulation packages based on nonequilibrium Green’s functions and density matrices. The Gaussian distribution suppresses scattering at high momentum transfer which enhances the lifetime of the upper laser level in mid-IR lasers. For THz lasers, a broader range of scattering transitions is of relevance, which is sensitive to the entire profile of the interface fluctuations. Furthermore we discuss the implementation of interface roughness within a two band model.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Probing scattering mechanisms with symmetric quantum cascade lasers

Christoph Deutsch, Hermann Detz, Tobias Zederbauer, Aaron M. Andrews, Pavel Klang, Tillmann Kubis, Gerhard Klimeck, Manfred E. Schuster, Werner Schrenk, Gottfried Strasser, and Karl Unterrainer
Opt. Express 21(6) 7209-7215 (2013)

Quantum cascade lasers: 20 years of challenges

Miriam Serena Vitiello, Giacomo Scalari, Benjamin Williams, and Paolo De Natale
Opt. Express 23(4) 5167-5182 (2015)

Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers

Peter Greck, Stefan Birner, Bernhard Huber, and Peter Vogl
Opt. Express 23(5) 6587-6600 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
    [Crossref]
  3. T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, “Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities,” J. Appl. Phys. 93, 1586–1597 (2003).
    [Crossref]
  4. S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
    [Crossref]
  5. A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Phys. Rev. B 73, 085311 (2006).
    [Crossref]
  6. A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
    [Crossref]
  7. Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101, 171117 (2012).
    [Crossref]
  8. J. B. Khurgin, “Inhomogeneous origin of the interface roughness broadening of intersubband transitions,” Appl. Phys. Lett. 93, 091104 (2008).
    [Crossref]
  9. J. B. Khurgin, Y. Dikmelik, P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, and C. F. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94, 091101 (2009).
    [Crossref]
  10. T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
    [Crossref]
  11. S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B 32, 8171–8186 (1985).
    [Crossref]
  12. R. M. Feenstra, D. A. Collins, D. Z. Y. Ting, M. W. Wang, and T. C. McGill, “Interface roughness and asymmetry in inas/gasb superlattices studied by scanning tunneling microscopy,” Phys. Rev. Lett. 72, 2749–2752 (1994).
    [Crossref] [PubMed]
  13. A. Y. Lew, S. L. Zuo, E. T. Yu, and R. H. Miles, “Correlation between atomic-scale structure and mobility anisotropy in InAsGa1−xInx Sb superlattices,” Phys. Rev. B 57, 6534–6539 (1998).
    [Crossref]
  14. K.-J. Chao, N. Liu, C.-K. Shih, D. W. Gotthold, and B. G. Streetman, “Factors influencing the interfacial roughness of InGaAs/GaAs heterostructures: A scanning tunneling microscopy study,” Appl. Phys. Lett. 75, 1703–1705 (1999).
    [Crossref]
  15. P. Offermans, P. M. Koenraad, J. H. Wolter, M. Beck, T. Aellen, and J. Faist, “Digital alloy interface grading of an InAlAs/InGaAs quantum cascade laser structure studied by cross-sectional scanning tunneling microscopy,” Appl. Phys. Lett. 83, 4131–4133 (2003).
    [Crossref]
  16. T. Saku, Y. Horikoshi, and Y. Tokura, “Limit of electron mobility in AlGaAs/GaAs modulation-doped het-erostructures,” Jpn. J. Appl. Phys. 35, 34–38 (1996).
    [Crossref]
  17. F. Lopez, M. R. Wood, M. Weimer, C. F. Gmachl, and C. G. Caneau, (2013). Abstract presented at the ITQW, Bolton Landing.
  18. Y. Chiu, Y. Dikmelik, Q. Zhang, J. Khurgin, and C. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in “Lasers and Electro-Optics (CLEO), 2012 Conference on,” (2012), pp. 1–2.
  19. S. A. Cohen, “The Fourier transform asymptotic behavior theorem,” IEEE Transactions on Education 12, 56–57 (1969).
    [Crossref]
  20. C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
    [Crossref]
  21. A. Wacker, M. Lindskog, and D. Winge, “Nonequilibrium Green’s function model for simulation of quantum cascade laser devices under operating conditions,” IEEE J. Sel. Topics Quantum Electron. 19, 1200611 (2013).
    [Crossref]
  22. M. Lindskog, D. O. Winge, and A. Wacker, “Injection schemes in THz quantum cascade lasers under operation,” Proc. SPIE 8846, 884603 (2013).
    [Crossref]
  23. E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
    [Crossref]
  24. A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
    [Crossref]
  25. R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New Journal of Physics 12, 033045 (2010).
    [Crossref]
  26. M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
    [Crossref]
  27. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
    [Crossref]
  28. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
    [Crossref] [PubMed]
  29. D. O. Winge, M. Lindskog, and A. Wacker, “Nonlinear response of quantum cascade structures,” Appl. Phys. Lett. 101, 211113 (2012).
    [Crossref]
  30. C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys. 105, 123102 (2009).
    [Crossref]
  31. S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
    [Crossref]

2014 (1)

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

2013 (3)

A. Wacker, M. Lindskog, and D. Winge, “Nonequilibrium Green’s function model for simulation of quantum cascade laser devices under operating conditions,” IEEE J. Sel. Topics Quantum Electron. 19, 1200611 (2013).
[Crossref]

M. Lindskog, D. O. Winge, and A. Wacker, “Injection schemes in THz quantum cascade lasers under operation,” Proc. SPIE 8846, 884603 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

2012 (4)

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

D. O. Winge, M. Lindskog, and A. Wacker, “Nonlinear response of quantum cascade structures,” Appl. Phys. Lett. 101, 211113 (2012).
[Crossref]

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101, 171117 (2012).
[Crossref]

2010 (3)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New Journal of Physics 12, 033045 (2010).
[Crossref]

2009 (3)

C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys. 105, 123102 (2009).
[Crossref]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

J. B. Khurgin, Y. Dikmelik, P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, and C. F. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94, 091101 (2009).
[Crossref]

2008 (1)

J. B. Khurgin, “Inhomogeneous origin of the interface roughness broadening of intersubband transitions,” Appl. Phys. Lett. 93, 091104 (2008).
[Crossref]

2006 (2)

A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Phys. Rev. B 73, 085311 (2006).
[Crossref]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

2005 (1)

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

2003 (2)

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, “Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities,” J. Appl. Phys. 93, 1586–1597 (2003).
[Crossref]

P. Offermans, P. M. Koenraad, J. H. Wolter, M. Beck, T. Aellen, and J. Faist, “Digital alloy interface grading of an InAlAs/InGaAs quantum cascade laser structure studied by cross-sectional scanning tunneling microscopy,” Appl. Phys. Lett. 83, 4131–4133 (2003).
[Crossref]

1999 (1)

K.-J. Chao, N. Liu, C.-K. Shih, D. W. Gotthold, and B. G. Streetman, “Factors influencing the interfacial roughness of InGaAs/GaAs heterostructures: A scanning tunneling microscopy study,” Appl. Phys. Lett. 75, 1703–1705 (1999).
[Crossref]

1998 (1)

A. Y. Lew, S. L. Zuo, E. T. Yu, and R. H. Miles, “Correlation between atomic-scale structure and mobility anisotropy in InAsGa1−xInx Sb superlattices,” Phys. Rev. B 57, 6534–6539 (1998).
[Crossref]

1996 (1)

T. Saku, Y. Horikoshi, and Y. Tokura, “Limit of electron mobility in AlGaAs/GaAs modulation-doped het-erostructures,” Jpn. J. Appl. Phys. 35, 34–38 (1996).
[Crossref]

1994 (3)

R. M. Feenstra, D. A. Collins, D. Z. Y. Ting, M. W. Wang, and T. C. McGill, “Interface roughness and asymmetry in inas/gasb superlattices studied by scanning tunneling microscopy,” Phys. Rev. Lett. 72, 2749–2752 (1994).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[Crossref]

1985 (1)

S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B 32, 8171–8186 (1985).
[Crossref]

1982 (1)

T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
[Crossref]

1969 (1)

S. A. Cohen, “The Fourier transform asymptotic behavior theorem,” IEEE Transactions on Education 12, 56–57 (1969).
[Crossref]

Aellen, T.

P. Offermans, P. M. Koenraad, J. H. Wolter, M. Beck, T. Aellen, and J. Faist, “Digital alloy interface grading of an InAlAs/InGaAs quantum cascade laser structure studied by cross-sectional scanning tunneling microscopy,” Appl. Phys. Lett. 83, 4131–4133 (2003).
[Crossref]

Aers, G.

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Aidam, R.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

Akiyama, H.

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, “Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities,” J. Appl. Phys. 93, 1586–1597 (2003).
[Crossref]

Ando, T.

T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
[Crossref]

Aung, N. L.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101, 171117 (2012).
[Crossref]

Ban, D.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Bastard, G.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Phys. Rev. B 73, 085311 (2006).
[Crossref]

Beck, M.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

P. Offermans, P. M. Koenraad, J. H. Wolter, M. Beck, T. Aellen, and J. Faist, “Digital alloy interface grading of an InAlAs/InGaAs quantum cascade laser structure studied by cross-sectional scanning tunneling microscopy,” Appl. Phys. Lett. 83, 4131–4133 (2003).
[Crossref]

Bismuto, A.

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

Borak, A.

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

Caneau, C. G.

F. Lopez, M. R. Wood, M. Weimer, C. F. Gmachl, and C. G. Caneau, (2013). Abstract presented at the ITQW, Bolton Landing.

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[Crossref]

Carras, M.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

Chan, C. W. I.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

Chao, K.-J.

K.-J. Chao, N. Liu, C.-K. Shih, D. W. Gotthold, and B. G. Streetman, “Factors influencing the interfacial roughness of InGaAs/GaAs heterostructures: A scanning tunneling microscopy study,” Appl. Phys. Lett. 75, 1703–1705 (1999).
[Crossref]

Chiu, Y.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101, 171117 (2012).
[Crossref]

Y. Chiu, Y. Dikmelik, Q. Zhang, J. Khurgin, and C. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in “Lasers and Electro-Optics (CLEO), 2012 Conference on,” (2012), pp. 1–2.

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cohen, S. A.

S. A. Cohen, “The Fourier transform asymptotic behavior theorem,” IEEE Transactions on Education 12, 56–57 (1969).
[Crossref]

Collins, D. A.

R. M. Feenstra, D. A. Collins, D. Z. Y. Ting, M. W. Wang, and T. C. McGill, “Interface roughness and asymmetry in inas/gasb superlattices studied by scanning tunneling microscopy,” Phys. Rev. Lett. 72, 2749–2752 (1994).
[Crossref] [PubMed]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Dikmelik, Y.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101, 171117 (2012).
[Crossref]

J. B. Khurgin, Y. Dikmelik, P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, and C. F. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94, 091101 (2009).
[Crossref]

Y. Chiu, Y. Dikmelik, Q. Zhang, J. Khurgin, and C. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in “Lasers and Electro-Optics (CLEO), 2012 Conference on,” (2012), pp. 1–2.

Dupont, E.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Escarra, M. D.

J. B. Khurgin, Y. Dikmelik, P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, and C. F. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94, 091101 (2009).
[Crossref]

Faist, J.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New Journal of Physics 12, 033045 (2010).
[Crossref]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

P. Offermans, P. M. Koenraad, J. H. Wolter, M. Beck, T. Aellen, and J. Faist, “Digital alloy interface grading of an InAlAs/InGaAs quantum cascade laser structure studied by cross-sectional scanning tunneling microscopy,” Appl. Phys. Lett. 83, 4131–4133 (2003).
[Crossref]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Falub, C. V.

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

Fathololoumi, S.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Fathy, D.

S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B 32, 8171–8186 (1985).
[Crossref]

Fedorov, G.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Phys. Rev. B 73, 085311 (2006).
[Crossref]

Feenstra, R. M.

R. M. Feenstra, D. A. Collins, D. Z. Y. Ting, M. W. Wang, and T. C. McGill, “Interface roughness and asymmetry in inas/gasb superlattices studied by scanning tunneling microscopy,” Phys. Rev. Lett. 72, 2749–2752 (1994).
[Crossref] [PubMed]

Ferry, D. K.

S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B 32, 8171–8186 (1985).
[Crossref]

Fowler, A. B.

T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
[Crossref]

Franz, K. J.

J. B. Khurgin, Y. Dikmelik, P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, and C. F. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94, 091101 (2009).
[Crossref]

Giovannini, M.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Y. Chiu, Y. Dikmelik, Q. Zhang, J. Khurgin, and C. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in “Lasers and Electro-Optics (CLEO), 2012 Conference on,” (2012), pp. 1–2.

Gmachl, C. F.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101, 171117 (2012).
[Crossref]

J. B. Khurgin, Y. Dikmelik, P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, and C. F. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94, 091101 (2009).
[Crossref]

F. Lopez, M. R. Wood, M. Weimer, C. F. Gmachl, and C. G. Caneau, (2013). Abstract presented at the ITQW, Bolton Landing.

Goodnick, S. M.

S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B 32, 8171–8186 (1985).
[Crossref]

Gotthold, D. W.

K.-J. Chao, N. Liu, C.-K. Shih, D. W. Gotthold, and B. G. Streetman, “Factors influencing the interfacial roughness of InGaAs/GaAs heterostructures: A scanning tunneling microscopy study,” Appl. Phys. Lett. 75, 1703–1705 (1999).
[Crossref]

Grutzmacher, D.

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

Hoffman, A. J.

J. B. Khurgin, Y. Dikmelik, P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, and C. F. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94, 091101 (2009).
[Crossref]

Horikoshi, Y.

T. Saku, Y. Horikoshi, and Y. Tokura, “Limit of electron mobility in AlGaAs/GaAs modulation-doped het-erostructures,” Jpn. J. Appl. Phys. 35, 34–38 (1996).
[Crossref]

Hu, Q.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

Huang, S.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Jirauschek, C.

Khurgin, J.

Y. Chiu, Y. Dikmelik, Q. Zhang, J. Khurgin, and C. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in “Lasers and Electro-Optics (CLEO), 2012 Conference on,” (2012), pp. 1–2.

Khurgin, J. B.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101, 171117 (2012).
[Crossref]

J. B. Khurgin, Y. Dikmelik, P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, and C. F. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94, 091101 (2009).
[Crossref]

J. B. Khurgin, “Inhomogeneous origin of the interface roughness broadening of intersubband transitions,” Appl. Phys. Lett. 93, 091104 (2008).
[Crossref]

Koenraad, P. M.

P. Offermans, P. M. Koenraad, J. H. Wolter, M. Beck, T. Aellen, and J. Faist, “Digital alloy interface grading of an InAlAs/InGaAs quantum cascade laser structure studied by cross-sectional scanning tunneling microscopy,” Appl. Phys. Lett. 83, 4131–4133 (2003).
[Crossref]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Krivanek, O. L.

S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B 32, 8171–8186 (1985).
[Crossref]

Kumar, S.

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

Laframboise, S. R.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Leuliet, A.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Phys. Rev. B 73, 085311 (2006).
[Crossref]

Lew, A. Y.

A. Y. Lew, S. L. Zuo, E. T. Yu, and R. H. Miles, “Correlation between atomic-scale structure and mobility anisotropy in InAsGa1−xInx Sb superlattices,” Phys. Rev. B 57, 6534–6539 (1998).
[Crossref]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Liliental, Z.

S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B 32, 8171–8186 (1985).
[Crossref]

Lindskog, M.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

A. Wacker, M. Lindskog, and D. Winge, “Nonequilibrium Green’s function model for simulation of quantum cascade laser devices under operating conditions,” IEEE J. Sel. Topics Quantum Electron. 19, 1200611 (2013).
[Crossref]

M. Lindskog, D. O. Winge, and A. Wacker, “Injection schemes in THz quantum cascade lasers under operation,” Proc. SPIE 8846, 884603 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

D. O. Winge, M. Lindskog, and A. Wacker, “Nonlinear response of quantum cascade structures,” Appl. Phys. Lett. 101, 211113 (2012).
[Crossref]

Liu, H. C.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Liu, N.

K.-J. Chao, N. Liu, C.-K. Shih, D. W. Gotthold, and B. G. Streetman, “Factors influencing the interfacial roughness of InGaAs/GaAs heterostructures: A scanning tunneling microscopy study,” Appl. Phys. Lett. 75, 1703–1705 (1999).
[Crossref]

Liu, P. Q.

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101, 171117 (2012).
[Crossref]

J. B. Khurgin, Y. Dikmelik, P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, and C. F. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94, 091101 (2009).
[Crossref]

Liverini, V.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

Lopez, F.

F. Lopez, M. R. Wood, M. Weimer, C. F. Gmachl, and C. G. Caneau, (2013). Abstract presented at the ITQW, Bolton Landing.

Lugli, P.

C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys. 105, 123102 (2009).
[Crossref]

Maisons, G.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

McGill, T. C.

R. M. Feenstra, D. A. Collins, D. Z. Y. Ting, M. W. Wang, and T. C. McGill, “Interface roughness and asymmetry in inas/gasb superlattices studied by scanning tunneling microscopy,” Phys. Rev. Lett. 72, 2749–2752 (1994).
[Crossref] [PubMed]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Miles, R. H.

A. Y. Lew, S. L. Zuo, E. T. Yu, and R. H. Miles, “Correlation between atomic-scale structure and mobility anisotropy in InAsGa1−xInx Sb superlattices,” Phys. Rev. B 57, 6534–6539 (1998).
[Crossref]

Mtys, A.

Muller, E.

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

Noda, T.

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, “Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities,” J. Appl. Phys. 93, 1586–1597 (2003).
[Crossref]

Offermans, P.

P. Offermans, P. M. Koenraad, J. H. Wolter, M. Beck, T. Aellen, and J. Faist, “Digital alloy interface grading of an InAlAs/InGaAs quantum cascade laser structure studied by cross-sectional scanning tunneling microscopy,” Appl. Phys. Lett. 83, 4131–4133 (2003).
[Crossref]

Ostendorf, R.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Razavipour, S. G.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Reno, J. L.

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

Sakaki, H.

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, “Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities,” J. Appl. Phys. 93, 1586–1597 (2003).
[Crossref]

Saku, T.

T. Saku, Y. Horikoshi, and Y. Tokura, “Limit of electron mobility in AlGaAs/GaAs modulation-doped het-erostructures,” Jpn. J. Appl. Phys. 35, 34–38 (1996).
[Crossref]

Scandolo, S.

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[Crossref]

Scheinert, M.

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

Shih, C.-K.

K.-J. Chao, N. Liu, C.-K. Shih, D. W. Gotthold, and B. G. Streetman, “Factors influencing the interfacial roughness of InGaAs/GaAs heterostructures: A scanning tunneling microscopy study,” Appl. Phys. Lett. 75, 1703–1705 (1999).
[Crossref]

Sigg, H.

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

Sirtori, C.

A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Phys. Rev. B 73, 085311 (2006).
[Crossref]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[Crossref]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Smirnov, D.

A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Phys. Rev. B 73, 085311 (2006).
[Crossref]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

Stern, F.

T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
[Crossref]

Streetman, B. G.

K.-J. Chao, N. Liu, C.-K. Shih, D. W. Gotthold, and B. G. Streetman, “Factors influencing the interfacial roughness of InGaAs/GaAs heterostructures: A scanning tunneling microscopy study,” Appl. Phys. Lett. 75, 1703–1705 (1999).
[Crossref]

Terazzi, R.

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New Journal of Physics 12, 033045 (2010).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

Ting, D. Z. Y.

R. M. Feenstra, D. A. Collins, D. Z. Y. Ting, M. W. Wang, and T. C. McGill, “Interface roughness and asymmetry in inas/gasb superlattices studied by scanning tunneling microscopy,” Phys. Rev. Lett. 72, 2749–2752 (1994).
[Crossref] [PubMed]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Tokura, Y.

T. Saku, Y. Horikoshi, and Y. Tokura, “Limit of electron mobility in AlGaAs/GaAs modulation-doped het-erostructures,” Jpn. J. Appl. Phys. 35, 34–38 (1996).
[Crossref]

Trinite, V.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

Tsujino, S.

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

Unuma, T.

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, “Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities,” J. Appl. Phys. 93, 1586–1597 (2003).
[Crossref]

Vasanelli, A.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Phys. Rev. B 73, 085311 (2006).
[Crossref]

Vinter, B.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

Wacker, A.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

M. Lindskog, D. O. Winge, and A. Wacker, “Injection schemes in THz quantum cascade lasers under operation,” Proc. SPIE 8846, 884603 (2013).
[Crossref]

A. Wacker, M. Lindskog, and D. Winge, “Nonequilibrium Green’s function model for simulation of quantum cascade laser devices under operating conditions,” IEEE J. Sel. Topics Quantum Electron. 19, 1200611 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

D. O. Winge, M. Lindskog, and A. Wacker, “Nonlinear response of quantum cascade structures,” Appl. Phys. Lett. 101, 211113 (2012).
[Crossref]

Wade, A.

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Phys. Rev. B 73, 085311 (2006).
[Crossref]

Wang, M. W.

R. M. Feenstra, D. A. Collins, D. Z. Y. Ting, M. W. Wang, and T. C. McGill, “Interface roughness and asymmetry in inas/gasb superlattices studied by scanning tunneling microscopy,” Phys. Rev. Lett. 72, 2749–2752 (1994).
[Crossref] [PubMed]

Wasilewski, Z. R.

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20, 3866–3876 (2012).
[Crossref] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

Weimer, M.

F. Lopez, M. R. Wood, M. Weimer, C. F. Gmachl, and C. G. Caneau, (2013). Abstract presented at the ITQW, Bolton Landing.

Wilmsen, C. W.

S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B 32, 8171–8186 (1985).
[Crossref]

Winge, D.

A. Wacker, M. Lindskog, and D. Winge, “Nonequilibrium Green’s function model for simulation of quantum cascade laser devices under operating conditions,” IEEE J. Sel. Topics Quantum Electron. 19, 1200611 (2013).
[Crossref]

Winge, D. O.

M. Lindskog, D. O. Winge, and A. Wacker, “Injection schemes in THz quantum cascade lasers under operation,” Proc. SPIE 8846, 884603 (2013).
[Crossref]

D. O. Winge, M. Lindskog, and A. Wacker, “Nonlinear response of quantum cascade structures,” Appl. Phys. Lett. 101, 211113 (2012).
[Crossref]

Wolf, J. M.

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

Wolter, J. H.

P. Offermans, P. M. Koenraad, J. H. Wolter, M. Beck, T. Aellen, and J. Faist, “Digital alloy interface grading of an InAlAs/InGaAs quantum cascade laser structure studied by cross-sectional scanning tunneling microscopy,” Appl. Phys. Lett. 83, 4131–4133 (2003).
[Crossref]

Wood, M. R.

F. Lopez, M. R. Wood, M. Weimer, C. F. Gmachl, and C. G. Caneau, (2013). Abstract presented at the ITQW, Bolton Landing.

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Yoshita, M.

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, “Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities,” J. Appl. Phys. 93, 1586–1597 (2003).
[Crossref]

Yu, E. T.

A. Y. Lew, S. L. Zuo, E. T. Yu, and R. H. Miles, “Correlation between atomic-scale structure and mobility anisotropy in InAsGa1−xInx Sb superlattices,” Phys. Rev. B 57, 6534–6539 (1998).
[Crossref]

Zhang, Q.

Y. Chiu, Y. Dikmelik, Q. Zhang, J. Khurgin, and C. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in “Lasers and Electro-Optics (CLEO), 2012 Conference on,” (2012), pp. 1–2.

Zuo, S. L.

A. Y. Lew, S. L. Zuo, E. T. Yu, and R. H. Miles, “Correlation between atomic-scale structure and mobility anisotropy in InAsGa1−xInx Sb superlattices,” Phys. Rev. B 57, 6534–6539 (1998).
[Crossref]

Appl. Phys. Lett. (11)

S. Tsujino, A. Borak, E. Muller, M. Scheinert, C. V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, and J. Faist, “Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAsAlInAs quantum-cascade structures,” Appl. Phys. Lett. 86, 062113 (2005).
[Crossref]

A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, and J. Faist, “Role of elastic scattering mechanisms in GaInAs/AlInAs quantum cascade lasers,” Appl. Phys. Lett. 89, 172120 (2006).
[Crossref]

Y. Chiu, Y. Dikmelik, P. Q. Liu, N. L. Aung, J. B. Khurgin, and C. F. Gmachl, “Importance of interface roughness induced intersubband scattering in mid-infrared quantum cascade lasers,” Appl. Phys. Lett. 101, 171117 (2012).
[Crossref]

J. B. Khurgin, “Inhomogeneous origin of the interface roughness broadening of intersubband transitions,” Appl. Phys. Lett. 93, 091104 (2008).
[Crossref]

J. B. Khurgin, Y. Dikmelik, P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, and C. F. Gmachl, “Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers,” Appl. Phys. Lett. 94, 091101 (2009).
[Crossref]

K.-J. Chao, N. Liu, C.-K. Shih, D. W. Gotthold, and B. G. Streetman, “Factors influencing the interfacial roughness of InGaAs/GaAs heterostructures: A scanning tunneling microscopy study,” Appl. Phys. Lett. 75, 1703–1705 (1999).
[Crossref]

P. Offermans, P. M. Koenraad, J. H. Wolter, M. Beck, T. Aellen, and J. Faist, “Digital alloy interface grading of an InAlAs/InGaAs quantum cascade laser structure studied by cross-sectional scanning tunneling microscopy,” Appl. Phys. Lett. 83, 4131–4133 (2003).
[Crossref]

A. Bismuto, R. Terazzi, M. Beck, and J. Faist, “Electrically tunable, high performance quantum cascade laser,” Appl. Phys. Lett. 96, 141105 (2010).
[Crossref]

M. Lindskog, J. M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, and A. Wacker, “Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green’s functions,” Appl. Phys. Lett. 105, 103106 (2014).
[Crossref]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[Crossref]

D. O. Winge, M. Lindskog, and A. Wacker, “Nonlinear response of quantum cascade structures,” Appl. Phys. Lett. 101, 211113 (2012).
[Crossref]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

A. Wacker, M. Lindskog, and D. Winge, “Nonequilibrium Green’s function model for simulation of quantum cascade laser devices under operating conditions,” IEEE J. Sel. Topics Quantum Electron. 19, 1200611 (2013).
[Crossref]

IEEE Transactions on Education (1)

S. A. Cohen, “The Fourier transform asymptotic behavior theorem,” IEEE Transactions on Education 12, 56–57 (1969).
[Crossref]

J. Appl. Phys. (4)

C. Jirauschek and P. Lugli, “Monte-Carlo-based spectral gain analysis for terahertz quantum cascade lasers,” J. Appl. Phys. 105, 123102 (2009).
[Crossref]

S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, “Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers,” J. Appl. Phys. 113, 113109 (2013).
[Crossref]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys. 111, 073111 (2012).
[Crossref]

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, “Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities,” J. Appl. Phys. 93, 1586–1597 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Saku, Y. Horikoshi, and Y. Tokura, “Limit of electron mobility in AlGaAs/GaAs modulation-doped het-erostructures,” Jpn. J. Appl. Phys. 35, 34–38 (1996).
[Crossref]

New Journal of Physics (1)

R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New Journal of Physics 12, 033045 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. B (4)

C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994).
[Crossref]

S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, “Surface roughness at the Si(100)-SiO2 interface,” Phys. Rev. B 32, 8171–8186 (1985).
[Crossref]

A. Y. Lew, S. L. Zuo, E. T. Yu, and R. H. Miles, “Correlation between atomic-scale structure and mobility anisotropy in InAsGa1−xInx Sb superlattices,” Phys. Rev. B 57, 6534–6539 (1998).
[Crossref]

A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, “Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers,” Phys. Rev. B 73, 085311 (2006).
[Crossref]

Phys. Rev. Lett. (1)

R. M. Feenstra, D. A. Collins, D. Z. Y. Ting, M. W. Wang, and T. C. McGill, “Interface roughness and asymmetry in inas/gasb superlattices studied by scanning tunneling microscopy,” Phys. Rev. Lett. 72, 2749–2752 (1994).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Lindskog, D. O. Winge, and A. Wacker, “Injection schemes in THz quantum cascade lasers under operation,” Proc. SPIE 8846, 884603 (2013).
[Crossref]

Rev. Mod. Phys. (1)

T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Other (2)

F. Lopez, M. R. Wood, M. Weimer, C. F. Gmachl, and C. G. Caneau, (2013). Abstract presented at the ITQW, Bolton Landing.

Y. Chiu, Y. Dikmelik, Q. Zhang, J. Khurgin, and C. Gmachl, “Engineering the intersubband lifetime with interface roughness in quantum cascade lasers,” in “Lasers and Electro-Optics (CLEO), 2012 Conference on,” (2012), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Fourier transforms f (q) of the correlation functions for different roughness distribution functions. In panel (a), the Gaussian distribution, Eq. (2), has the parameters Λ = 9 nm and Δ = 0.1 nm. The parameters for the exponential distributions, Eq. (3), Expon 1 (Λ̃ = 3.6 nm, Δ̃ = 0.17 nm) and Expon 2 (Λ̃ = 6.3 nm, Δ̃ = 0.1 nm), are transformed via Eq. (4) and (5), respectively. These distributions are used for the InGaAs/InAlGaAs based IR QCL. Panel (b) shows the exponential distribution with Λ̃ = 10 and Δ̃ = 0.2 nm, and the parameters for the two Gaussian distributions, Gauss 1 (Λ̃ = 24.5 and Δ̃ = 0.115 nm) and Gauss 2 (Λ̃ = 14.1 and Δ̃ = 0.2 nm), which are transformed via Eqs. (4) and (5), respectively. These distributions are used for the GaAs/AlGaAs based THz-QCLs.
Fig. 2
Fig. 2 (a) Current-field simulations of the THz QCL [23] using the NEGF model with and without inclusion of the valence band offset (VBO) in the roughness scattering. The simulation temperature is 140 K and the dashed line shows the experimental data at 150 K. Here, the exponential distribution function from Fig. 1(b) is used. (b) Gain simulations for the same sample at a bias of 74 mV/period.
Fig. 3
Fig. 3 (a) Current-field simulations of the mid-IR QCL [24] using the NEGF model with and without inclusion of the valence band offset (VBO) in the roughness scattering. The Gaussian interface roughness from Fig. 1(a) is applied. (b) Results for the gain at an electric field of 50 kV/cm and a lattice temperature of 300 K.
Fig. 4
Fig. 4 Band structure with the square moduli of the wavefunctions, together with the carrier density from the NEGF simulation, for the mid-IR structure of [24]. The arrow indicates the main laser transition.
Fig. 5
Fig. 5 (a) Current-field characteristics of the QCL in [24] for the DM (dashed lines) and NEGF (full lines) simulation schemes and different roughness distributions given in Fig. 1(a). (b) Peak gain vs. electric field. The dotted line denotes the gain required to compensate the losses. The red crosses show the experimental threshold data in both panels.
Fig. 6
Fig. 6 Electron density and square of the wavefunctions moduli at a bias of 74 mV/period, for the structure of [23], based on resonant phonon injection and extraction. The upper and lower laser levels are labeled by u and l, respectively, i label the injector level and e the extractor level. The simulations are carried out for a lattice temperature of 140 K.
Fig. 7
Fig. 7 (a) Current-field simulations of the THz QCL [23] using the NEGF model with different roughness distributions given in Fig. 1(b). The simulations are carried out for a lattice temperature of 140 K. (b) Gain at 74 mV/period for the THz QCL [23], using different roughness models. The linewidths Λ of the gain peaks are without interface roughness (IFR): 2.8 meV; for Gauss 1: 3.6 meV; for Expon: 3.9 meV; and for Gauss 2: 4.3 meV.
Fig. 8
Fig. 8 Electron density and square of the wavefunctions moduli at a bias of 56 mV/period, for the structure of [27], based on resonant tunneling injection from the injector level (i) into the upper laser level (u) and phonon extraction from the extraction level (e). The lower laser level is labeled by l.
Fig. 9
Fig. 9 (a) Current field characteristics of the resonant-tunneling design demonstrated in [27] at both high and low temperatures for different roughness distributions given in Fig. 1(b). Crosses show current densities under laser operation, assuming total losses of 30 cm−1. (b) Gain simulations at the same temperatures where in addition the case of no interface roughness is also included.

Tables (1)

Tables Icon

Table 1 Scattering times in the DM model for the upper and lower laser state at a bias of 50 kV/cm. The NEGF simulations show the same trend but due to the intricate treatment of coherences, it is less straightforward to extract a single time.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

1 A d 2 r d 2 r e i q ( r r ) η ( r ) η ( r ) = d 2 r e i q r d 2 r 0 η ( r 0 + r ) η ( r 0 ) = d 2 r e i q r η ( r ) η ( 0 ) f ( q ) ,
η ( r ) η ( 0 ) = Δ 2 exp ( | r 2 | Λ 2 ) f ( q ) = π Δ 2 Λ 2 exp ( Λ 2 | q | 2 4 ) .
η ( r ) η ( 0 ) = Δ ˜ 2 exp ( | r | Λ ˜ ) f ( q ) = 2 π Δ ˜ 2 Λ 2 ( 1 + Λ ˜ 2 | q | 2 ) 3 / 2 .
Translation 1 Λ ˜ = Λ / 6 and Δ ˜ = 3 Δ
Translation 2 Λ ˜ = Λ / 2 and Δ ˜ = Δ
δ δ r δ δ r g ( r ) = 1 4 π 2 d 2 q q 2 f ( q ) e i q r .
H ^ = α β k , p U α β ( p ) a α k + p α β k with U α β ( p ) = j d 2 r e i p r A η j ( r ) Ψ α * ( z j ) Δ E Ψ β ( z j )
Ψ β ( z ) ( ψ β c ( z ) ψ β v ( z ) ) and Δ E ( Δ E c 0 0 Δ E v ) ,
U α , β ( p ) U α , β ( p ) = j f j ( p ) A ( Δ E c ψ α c * ψ β c + Δ E v ψ α v * ψ β v ) ( Δ E c ψ α c * ψ β c + Δ E v ψ α v * ψ β v ) ,
U α , β ( p ) U α , β ( p ) = j f j ( p ) A Δ E c 2 ( ψ α c * ψ β c + ψ α v * ψ β v ) ( ψ α c * ψ β c + ψ α v * ψ β v ) .

Metrics