Abstract

A specially-designed apodized chirped PPLN based on particular positioning of poled regions within the periods has been realized theoretically and experimentally to demonstrate the reciprocal response in the SHG spectra over a 30-nm bandwidth, for up-chirp and down-chirp directions. The simulation results are compared with another apodized chirped PPLN for which the placement of poled regions is deviated from optimum positions. The average power difference is less than 0.75 dB and the standard deviations of extrema on second harmonic power responses are 1.34 dB and 1.64 dB for two up-chirp and down-chirp directions respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Engineering of effective second-order nonlinearity in uniform and chirped gratings

Ameneh Bostani, Amirhossein Tehranchi, and Raman Kashyap
J. Opt. Soc. Am. B 29(10) 2929-2934 (2012)

Tailoring and tuning of the broadband spectrum of a step-chirped grating based frequency doubler using tightly-focused Gaussian beams

Ameneh Bostani, Meenu Ahlawat, Amirhossein Tehranchi, Roberto Morandotti, and Raman Kashyap
Opt. Express 21(24) 29847-29853 (2013)

Broadband wavelength conversion based on apodized χ(2) grating

T. Umeki, M. Asobe, T. Yanagawa, O. Tadanaga, Y. Nishida, K. Magari, and H. Suzuki
J. Opt. Soc. Am. B 26(12) 2315-2322 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Malacarne, G. Meloni, G. Berrettini, N. Sambo, L. Potì, and A. Bogoni, “Optical multicasting of 16QAM signals in periodically-poled lithium niobate waveguide,” J. Lightwave Technol. 31(11), 1797–1803 (2013).
    [Crossref]
  2. J. Wang, H. Fu, D. Geng, and A. E. Willner, “Single-PPLN-assisted wavelength-/time-selective switching/dropping/swapping for 100-GHz-spaced WDM signals,” Opt. Express 21(3), 3756–3774 (2013).
    [Crossref] [PubMed]
  3. T. Richter, R. Nouroozi, H. Suche, W. Sohler, and C. Schubert, “PPLN-Waveguide based tunable wavelength conversion of QAM data within the C-band,” IEEE Photon. Technol. Lett. 25(21), 2085–2088 (2013).
    [Crossref]
  4. A. Bogoni, X. Wu, S. R. Nuccio, and A. E. Willner, “640 Gb/s All-optical regenerator based on a periodically poled lithium niobate waveguide,” J. Lightwave Technol. 30(12), 1829–1834 (2012).
    [Crossref]
  5. G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFGDFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010).
    [Crossref]
  6. W. Dang, Y. Chen, and X. Chen, “Performance enhancement for ultrashort-pulse wavelength conversion by using an aperiodic domain-inverted optical superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
    [Crossref]
  7. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [Crossref]
  8. M. Ahlawat, A. Bostani, A. Tehranchi, and R. Kashyap, “Agile multicasting based on cascaded χ(2) nonlinearities in a step-chirped periodically poled lithium niobate,” Opt. Lett. 38(15), 2760–2762 (2013).
    [Crossref] [PubMed]
  9. M. Ahlawat, A. Bostani, A. Tehranchi, and R. Kashyap, “Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN,” Opt. Express 21(23), 28809–28816 (2013).
    [Crossref] [PubMed]
  10. F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43(25), 1446–1447 (2007).
    [Crossref]
  11. U. Sapaev and D. Reid, “General second-harmonic pulse shaping in grating-engineered quasi-phase-matched nonlinear crystals,” Opt. Express 13(9), 3264–3276 (2005).
    [Crossref] [PubMed]
  12. M. Conforti, F. Baronio, and C. De Angelis, “From femtosecond infrared to picosecond visible pulses: temporal shaping with high-efficiency conversion,” Opt. Lett. 32(13), 1779–1781 (2007).
    [Crossref] [PubMed]
  13. R. Schiek and T. Pertsch, “Absolute measurement of the quadratic nonlinear susceptibility of lithium niobate in waveguides,” Opt. Mater. Express 2(2), 126–139 (2012).
    [Crossref]
  14. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
    [Crossref]
  15. M. Fujimura, T. Kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon. Technol. Lett. 12(11), 1513–1515 (2000).
    [Crossref]
  16. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
    [Crossref]
  17. A. Leshem, R. Shiloh, and A. Arie, “Experimental realization of spectral shaping using nonlinear optical holograms,” Opt. Lett. 39(18), 5370–5373 (2014).
    [Crossref]
  18. A. Tehranchi and R. Kashyap, “Novel designs for Efficient broadband frequency doublers using Singly Pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
    [Crossref]
  19. A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second-harmonic generation,” J. Lightwave Technol. 26(3), 343–349 (2008).
    [Crossref]
  20. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 µm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32(9), 1129–1131 (2007).
    [Crossref] [PubMed]
  21. I. Tomita, T. Umeki, O. Tadanaga, H. Song, M. Asobe, and H. Takenouchi, “Properties of power dependence on low-crosstalk waveband conversion with an apodized multiperiod-QPM LiNbO3 device,” Opt. Express 22(12), 15232–15244 (2014).
    [Crossref]
  22. A. A. Bostani, A. Tehranchi, and R. Kashyap, “Engineering of effective second-order nonlinearity in uniform and chirped gratings,” J. Opt. Soc. Am. B 29(10), 2929–2934 (2012).
    [Crossref]
  23. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30(6), 1551–1568 (2013).
    [Crossref]
  24. K. Pandiyan, Y.-S. Kang, H.-H. Lim, B.-J. Kim, O. Prakash, and M.-S. Cha, “Poling quality evaluation of periodically poled lithium niobate using diffraction method,” J. Opt. Soc. Korea 12(3), 205–209 (2008).
    [Crossref]
  25. A. Bostani, M. Ahlawat, A. Tehranchi, R. Morandotti, and R. Kashyap, “Tailoring and tuning of the broadband spectrum of a step-chirped grating based frequency doubler using tightly-focused Gaussian beams,” Opt. Express 21(24), 29847–29853 (2013).
    [Crossref] [PubMed]
  26. A. Bostani, A. Tehranchi, and R. Kashyap, “Study of apodization of aperiodically poled lithium niobate (APPLN) for second harmonic generation (SHG),” in Proceeding of 7th Workshop on Fibre and Optical Passive Components (IEEE,2011), pp. 1–4.
    [Crossref]

2014 (2)

2013 (7)

J. Wang, H. Fu, D. Geng, and A. E. Willner, “Single-PPLN-assisted wavelength-/time-selective switching/dropping/swapping for 100-GHz-spaced WDM signals,” Opt. Express 21(3), 3756–3774 (2013).
[Crossref] [PubMed]

A. Malacarne, G. Meloni, G. Berrettini, N. Sambo, L. Potì, and A. Bogoni, “Optical multicasting of 16QAM signals in periodically-poled lithium niobate waveguide,” J. Lightwave Technol. 31(11), 1797–1803 (2013).
[Crossref]

C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30(6), 1551–1568 (2013).
[Crossref]

M. Ahlawat, A. Bostani, A. Tehranchi, and R. Kashyap, “Agile multicasting based on cascaded χ(2) nonlinearities in a step-chirped periodically poled lithium niobate,” Opt. Lett. 38(15), 2760–2762 (2013).
[Crossref] [PubMed]

M. Ahlawat, A. Bostani, A. Tehranchi, and R. Kashyap, “Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN,” Opt. Express 21(23), 28809–28816 (2013).
[Crossref] [PubMed]

A. Bostani, M. Ahlawat, A. Tehranchi, R. Morandotti, and R. Kashyap, “Tailoring and tuning of the broadband spectrum of a step-chirped grating based frequency doubler using tightly-focused Gaussian beams,” Opt. Express 21(24), 29847–29853 (2013).
[Crossref] [PubMed]

T. Richter, R. Nouroozi, H. Suche, W. Sohler, and C. Schubert, “PPLN-Waveguide based tunable wavelength conversion of QAM data within the C-band,” IEEE Photon. Technol. Lett. 25(21), 2085–2088 (2013).
[Crossref]

2012 (4)

2010 (1)

2009 (1)

A. Tehranchi and R. Kashyap, “Novel designs for Efficient broadband frequency doublers using Singly Pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
[Crossref]

2008 (2)

2007 (3)

2006 (1)

2005 (1)

2000 (1)

M. Fujimura, T. Kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon. Technol. Lett. 12(11), 1513–1515 (2000).
[Crossref]

1997 (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

1990 (1)

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Ahlawat, M.

Arie, A.

Asobe, M.

Baronio, F.

Berrettini, G.

Bogoni, A.

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Bostani, A.

Bostani, A. A.

Cha, M.-S.

Chang, D.

Chen, X.

W. Dang, Y. Chen, and X. Chen, “Performance enhancement for ultrashort-pulse wavelength conversion by using an aperiodic domain-inverted optical superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
[Crossref]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43(25), 1446–1447 (2007).
[Crossref]

Chen, Y.

W. Dang, Y. Chen, and X. Chen, “Performance enhancement for ultrashort-pulse wavelength conversion by using an aperiodic domain-inverted optical superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
[Crossref]

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43(25), 1446–1447 (2007).
[Crossref]

Conforti, M.

Dang, W.

W. Dang, Y. Chen, and X. Chen, “Performance enhancement for ultrashort-pulse wavelength conversion by using an aperiodic domain-inverted optical superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
[Crossref]

De Angelis, C.

Fejer, M. M.

Fu, H.

Fujimura, M.

M. Fujimura, T. Kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon. Technol. Lett. 12(11), 1513–1515 (2000).
[Crossref]

Furukawa, H.

Gallmann, L.

Geng, D.

Ito, H.

Kang, Y.-S.

Kashyap, R.

Kim, B.-J.

Kodama, T.

M. Fujimura, T. Kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon. Technol. Lett. 12(11), 1513–1515 (2000).
[Crossref]

Kumar, S.

Langrock, C.

Leshem, A.

Lim, H.-H.

Lin, Y. W.

Lu, F.

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43(25), 1446–1447 (2007).
[Crossref]

Lu, G.-W.

Lu, W.

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43(25), 1446–1447 (2007).
[Crossref]

Magari, K.

Malacarne, A.

McGeehan, J. E.

Meloni, G.

Miyazaki, T.

Morandotti, R.

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Nishida, Y.

Nishihara, H.

M. Fujimura, T. Kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon. Technol. Lett. 12(11), 1513–1515 (2000).
[Crossref]

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Nouroozi, R.

T. Richter, R. Nouroozi, H. Suche, W. Sohler, and C. Schubert, “PPLN-Waveguide based tunable wavelength conversion of QAM data within the C-band,” IEEE Photon. Technol. Lett. 25(21), 2085–2088 (2013).
[Crossref]

Nuccio, S. R.

Pandiyan, K.

Pertsch, T.

Phillips, C. R.

Potì, L.

Prakash, O.

Reid, D.

Richter, T.

T. Richter, R. Nouroozi, H. Suche, W. Sohler, and C. Schubert, “PPLN-Waveguide based tunable wavelength conversion of QAM data within the C-band,” IEEE Photon. Technol. Lett. 25(21), 2085–2088 (2013).
[Crossref]

Sambo, N.

Sapaev, U.

Schiek, R.

Schubert, C.

T. Richter, R. Nouroozi, H. Suche, W. Sohler, and C. Schubert, “PPLN-Waveguide based tunable wavelength conversion of QAM data within the C-band,” IEEE Photon. Technol. Lett. 25(21), 2085–2088 (2013).
[Crossref]

Shiloh, R.

Shinada, S.

Sohler, W.

T. Richter, R. Nouroozi, H. Suche, W. Sohler, and C. Schubert, “PPLN-Waveguide based tunable wavelength conversion of QAM data within the C-band,” IEEE Photon. Technol. Lett. 25(21), 2085–2088 (2013).
[Crossref]

Song, H.

Suche, H.

T. Richter, R. Nouroozi, H. Suche, W. Sohler, and C. Schubert, “PPLN-Waveguide based tunable wavelength conversion of QAM data within the C-band,” IEEE Photon. Technol. Lett. 25(21), 2085–2088 (2013).
[Crossref]

Suhara, T.

M. Fujimura, T. Kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon. Technol. Lett. 12(11), 1513–1515 (2000).
[Crossref]

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

Suzuki, H.

Tadanaga, O.

Takenouchi, H.

Tehranchi, A.

Tomita, I.

Umeki, T.

Wada, N.

Wang, J.

Willner, A. E.

Wu, X.

Xia, Y.

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43(25), 1446–1447 (2007).
[Crossref]

Yanagawa, T.

Zhang, J.

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43(25), 1446–1447 (2007).
[Crossref]

Electron. Lett. (1)

F. Lu, Y. Chen, J. Zhang, W. Lu, X. Chen, and Y. Xia, “Broadcast wavelength conversion based on cascaded χ(2) nonlinearity in MgO-doped periodically poled LiNbO3,” Electron. Lett. 43(25), 1446–1447 (2007).
[Crossref]

IEEE J. Quantum Electron. (3)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26(7), 1265–1276 (1990).
[Crossref]

A. Tehranchi and R. Kashyap, “Novel designs for Efficient broadband frequency doublers using Singly Pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (3)

M. Fujimura, T. Kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon. Technol. Lett. 12(11), 1513–1515 (2000).
[Crossref]

W. Dang, Y. Chen, and X. Chen, “Performance enhancement for ultrashort-pulse wavelength conversion by using an aperiodic domain-inverted optical superlattice,” IEEE Photon. Technol. Lett. 24(5), 347–349 (2012).
[Crossref]

T. Richter, R. Nouroozi, H. Suche, W. Sohler, and C. Schubert, “PPLN-Waveguide based tunable wavelength conversion of QAM data within the C-band,” IEEE Photon. Technol. Lett. 25(21), 2085–2088 (2013).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (2)

J. Opt. Soc. Korea (1)

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. Express (1)

Other (1)

A. Bostani, A. Tehranchi, and R. Kashyap, “Study of apodization of aperiodically poled lithium niobate (APPLN) for second harmonic generation (SHG),” in Proceeding of 7th Workshop on Fibre and Optical Passive Components (IEEE,2011), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of apodized step-chirped grating, using CPS & OCPS design. The 10 sections and 18 subsections are divided by black and blue line, respectively. n is the number of periods in each section. Periods are separated by red dash line. Gray area with black arrow shows the domain-inverted region within each period while the white area with pink arrow shows the region with natural domain.
Fig. 2
Fig. 2 a) Experimental setup to evaluate SH response reciprocity with a CW pump laser, EDFA: Erbium doped fiber amplifier, PC: Polarization Controller and OSA: Optical Spectrum Analyzer. An AC-PPLN device is mounted on a temperature-controlled oven. b) up-chirp and (c) down-chirp configurations, when the input and output fiber is interchanged.
Fig. 3
Fig. 3 Normalized simulated SH power versus FH wavelength for up-chirp and down-chirp configurations using AC-PPLN with a) CPS and b) OCPS design.
Fig. 4
Fig. 4 Normalized measured SH power versus FH wavelength for up-chirp and down-chirp configurations using AC-PPLN based on CPS.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d A 1 dz = 2i ω 1 2 d(z) n 1 c A 2 A 1 e iΔkz d A 2 dz = 2i ω 2 2 d(z) n 2 c A 1 2 e iΔkz ,
A 2 =D[ 0 CaΛ/2 e iΔkz dz CaΛ/2 C+aΛ/2 e iΔkz dz+ C+aΛ/2 Λ e iΔkz dz ],
P SHG = 8π d eff 2 P p 2 ε 0 c n p 2 n SH λ p 2 ω f 2 ( l 2 m 2 ),

Metrics