Abstract

An integrated silicon nanophotonic coherent imager (NCI), with a 4 × 4 array of coherent pixels is reported. In the proposed NCI, on-chip optical processing determines the intensity and depth of each point on the imaged object based on the instantaneous phase and amplitude of the optical wave incident on each pixel. The NCI operates based on a modified time-domain frequency modulated continuous wave (FMCW) ranging scheme, where concurrent time-domain measurements of both period and the zero-crossing time of each electrical output of the nanophotonic chip allows the NCI to overcome the traditional resolution limits of frequency domain detection. The detection of both intensity and relative delay enables applications such as high-resolution 3D reflective and transmissive imaging as well as index contrast imaging. We demonstrate 3D imaging with 15μm depth resolution and 50μm lateral resolution (limited by the pixel spacing) at up to 0.5-meter range. The reported NCI is also capable of detecting a 1% equivalent refractive index contrast at 1mm thickness.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kirmani, D. Venkatraman, D. Shin, A. Colao, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2013).
    [Crossref] [PubMed]
  2. A. McCarthy, X. Ren, A. D. Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
    [Crossref] [PubMed]
  3. M. D. Learmouth, “High resolution laser lidar utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
    [Crossref]
  4. S. Gao and R. Hui, “Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Optics Letters 37(11), 2022–2024 (2012).
    [Crossref] [PubMed]
  5. J. Busck and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43(24), 4705–4710 (2004).
    [Crossref] [PubMed]
  6. R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
    [Crossref]
  7. D. P. Hutchinson, “Coherent infrared imaging camera,” Proc. SPIE 2540, 204–209 (1998).
    [Crossref]
  8. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nature Photon. 4, 492–494 (2010).
    [Crossref]
  9. B. Abiri, F. Aflatouni, A. Rekhi, and A. Hajimiri, “Electronic two-dimensional beam steering for integrated optical phased arrays,” Optical Fiber Communication Conference (OFC), paper M2K.7 (2014).
  10. F. Aflatouni and H. Hashemi, “An electronically controlled semiconductor laser phased array,” International Microwave Symposium Digest (IMS), 1–3 (2012).
  11. J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  12. M. Izutsu, Y. Nakai, and T. Sueta, “Operation mechanism of the single-mode optical-waveguide Y junction,” Opt. Lett. 7(3), 136–138 (1982).
    [Crossref] [PubMed]
  13. K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
    [Crossref]
  14. A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
    [Crossref]
  15. I. V. Komarov and S. M. Smolskiy, Fundamentals of short-range FM radar (Artech House, 2003).

2013 (3)

A. Kirmani, D. Venkatraman, D. Shin, A. Colao, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2013).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. D. Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

2012 (1)

S. Gao and R. Hui, “Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Optics Letters 37(11), 2022–2024 (2012).
[Crossref] [PubMed]

2010 (2)

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nature Photon. 4, 492–494 (2010).
[Crossref]

K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

2004 (1)

2003 (1)

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

1998 (1)

D. P. Hutchinson, “Coherent infrared imaging camera,” Proc. SPIE 2540, 204–209 (1998).
[Crossref]

1990 (1)

M. D. Learmouth, “High resolution laser lidar utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[Crossref]

1982 (1)

Abiri, B.

B. Abiri, F. Aflatouni, A. Rekhi, and A. Hajimiri, “Electronic two-dimensional beam steering for integrated optical phased arrays,” Optical Fiber Communication Conference (OFC), paper M2K.7 (2014).

Adams, J. S.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Aflatouni, F.

B. Abiri, F. Aflatouni, A. Rekhi, and A. Hajimiri, “Electronic two-dimensional beam steering for integrated optical phased arrays,” Optical Fiber Communication Conference (OFC), paper M2K.7 (2014).

F. Aflatouni and H. Hashemi, “An electronically controlled semiconductor laser phased array,” International Microwave Symposium Digest (IMS), 1–3 (2012).

Ang, K. W.

K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Baehr-Jones, T.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nature Photon. 4, 492–494 (2010).
[Crossref]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Bergmen, K.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Buller, G. S.

Busck, J.

Colao, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colao, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2013).
[Crossref] [PubMed]

Davis, W. R.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Ding, R.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Fang, Q.

K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Forman, S. E.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Frera, A. D.

Gao, S.

S. Gao and R. Hui, “Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Optics Letters 37(11), 2022–2024 (2012).
[Crossref] [PubMed]

Gemmell, N. R.

Gould, M.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Goyal, V. K.

A. Kirmani, D. Venkatraman, D. Shin, A. Colao, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2013).
[Crossref] [PubMed]

Hajimiri, A.

B. Abiri, F. Aflatouni, A. Rekhi, and A. Hajimiri, “Electronic two-dimensional beam steering for integrated optical phased arrays,” Optical Fiber Communication Conference (OFC), paper M2K.7 (2014).

Hashemi, H.

F. Aflatouni and H. Hashemi, “An electronically controlled semiconductor laser phased array,” International Microwave Symposium Digest (IMS), 1–3 (2012).

Hatch, R. E.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Heiselberg, H.

Hochberg, M.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nature Photon. 4, 492–494 (2010).
[Crossref]

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Hui, R.

S. Gao and R. Hui, “Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Optics Letters 37(11), 2022–2024 (2012).
[Crossref] [PubMed]

Hutchinson, D. P.

D. P. Hutchinson, “Coherent infrared imaging camera,” Proc. SPIE 2540, 204–209 (1998).
[Crossref]

Izutsu, M.

Kirmani, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colao, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2013).
[Crossref] [PubMed]

Knowlton, R. C.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Komarov, I. V.

I. V. Komarov and S. M. Smolskiy, Fundamentals of short-range FM radar (Artech House, 2003).

Krichel, N. J.

Kwong, D. L.

K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Learmouth, M. D.

M. D. Learmouth, “High resolution laser lidar utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[Crossref]

Li, Q.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Lim, A. E. J.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Liow, T. Y.

K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Liu, Y.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Lo, G. O.

K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Lo, G. Q.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Ma, Y.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Marino, R. M.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

McCarthy, A.

McLaughlin, J. L.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Mooney, J. G.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Nakai, Y.

Novack, A.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

O’Brien, M. E.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Padmaraju, K.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Rekhi, A.

B. Abiri, F. Aflatouni, A. Rekhi, and A. Hajimiri, “Electronic two-dimensional beam steering for integrated optical phased arrays,” Optical Fiber Communication Conference (OFC), paper M2K.7 (2014).

Ren, X.

Rowe, G. S.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Ruggeri, A.

Scarcella, C.

Shah Hosseini, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Shapiro, J. H.

A. Kirmani, D. Venkatraman, D. Shin, A. Colao, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2013).
[Crossref] [PubMed]

Shin, D.

A. Kirmani, D. Venkatraman, D. Shin, A. Colao, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2013).
[Crossref] [PubMed]

Skelly, L.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Smolskiy, S. M.

I. V. Komarov and S. M. Smolskiy, Fundamentals of short-range FM radar (Artech House, 2003).

Song, Jun-F.

K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Stephens, T.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

Sueta, T.

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Tosi, A.

Venkatraman, D.

A. Kirmani, D. Venkatraman, D. Shin, A. Colao, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2013).
[Crossref] [PubMed]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Wong, F. N. C.

A. Kirmani, D. Venkatraman, D. Shin, A. Colao, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2013).
[Crossref] [PubMed]

Xiong, Y. Z.

K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Yang, Y.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Yu, M. B.

K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Zhang, Y.

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

M. D. Learmouth, “High resolution laser lidar utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. W. Ang, T. Y. Liow, Q. Fang, Jun-F. Song, Y. Z. Xiong, M. B. Yu, G. O. Lo, and D. L. Kwong, “Low thermal budget monolithic integration of evanescent-coupled Ge-on-SOI photodetector on Si CMOS platform,” IEEE J. Sel. Top. Quantum Electron. 16(1), 106–113 (2010).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Nature Photon. (1)

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nature Photon. 4, 492–494 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optics Letters (1)

S. Gao and R. Hui, “Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection,” Optics Letters 37(11), 2022–2024 (2012).
[Crossref] [PubMed]

Proc. SPIE (2)

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O’Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1–15 (2003).
[Crossref]

D. P. Hutchinson, “Coherent infrared imaging camera,” Proc. SPIE 2540, 204–209 (1998).
[Crossref]

Science (1)

A. Kirmani, D. Venkatraman, D. Shin, A. Colao, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2013).
[Crossref] [PubMed]

Other (4)

B. Abiri, F. Aflatouni, A. Rekhi, and A. Hajimiri, “Electronic two-dimensional beam steering for integrated optical phased arrays,” Optical Fiber Communication Conference (OFC), paper M2K.7 (2014).

F. Aflatouni and H. Hashemi, “An electronically controlled semiconductor laser phased array,” International Microwave Symposium Digest (IMS), 1–3 (2012).

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E. J. Lim, G. Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in proc. SPIE8781 (2013).
[Crossref]

I. V. Komarov and S. M. Smolskiy, Fundamentals of short-range FM radar (Artech House, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The structure of the 4 × 4 NCI, in which the light coming from the object is collected using 16 grating couplers (pixels) is shown. A fraction of the coherent light that is used to illuminate the object is guided using an optical fiber and is coupled into the chip through a grating coupler. This coupled light is combined with the collected optical signals from the object and is photo-detected using on-chip silicon-germanium photodiodes. (b) The NCI micro-photograph implemented on standard IME silicon-on-insulator process.

Fig. 2
Fig. 2

(a) Simplified block diagram of the imaging system for one pixel (grating coupler) is shown. (b) The optical and electrical signals at different points of the imager are depicted. The number of zero crossings per chirp period is used as a coarse estimate for the delay difference between the top arm and the bottom arm. The time difference between the last zero crossing in VT1(t) and VT2(t) and the end of the frequency ramp is used to find the fine estimate for the relative delay between two arms.

Fig. 3
Fig. 3

(a) The block diagram of the transmissive measurement setup using integrated NCI is shown. The collimated infrared beam passes through the substantially transparent object (at the operating wavelength) and is collected by the 16 pixels of the imager. The collected optical signal is combined with the reference signal, a fraction of the coherent source output used for illuminating the object, and is photo-detected. The photo-current is then directed to the electronic detection system. (b) The block diagram of the reflective mode measurement setup is depicted. The amplified output of the coherent source is collimated and is used to illuminate the object. A lens is used to form an image on the NCI pixel array.

Fig. 4
Fig. 4

(a) The measured distance vs. actual distance in μm for transmissive mode is shown. (b) The concurrent high depth resolution and large dynamic range offered by the integrated NCI in the transmissive mode is demonstrated. A 4cm object and two small pedestals with sub-100μm depth difference are concurrently imaged (left: the object, right: the 3D image). (c) The transmissive 3D image of a transparent pyramid is shown (top: the object, bottom: the 3D image). (d) The index of refraction contrast imaging using integrated NCI is demonstrated; top: two materials with the same thickness, bottom: the index contrast image. (e) The depth image of the US one-cent coin taken using the integrated NCI in the reflective mode is shown. The measured free-space relative propagation delay corresponding to the image depth is represented by pixel colors; pixels represented by dark red are closer to the imager. The image is approximately extended over 140μm of spatial depth.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E out = G P 0 4 e j ω 0 t [ β ( 1 + e j v ( t ) V π π ) + γ e j ϕ ( 1 + e j v ( t τ 0 ) V π π ) ] ,
v ( t ) = a 0 cos ( ω e t + 2 π α t 2 ) ,
i AC ( t ) = 1 4 RP 0 G β γ cos ( ϕ ) n = 1 J n 2 ( a 0 V π π ) cos ( 4 n π τ 0 α t + n ω e τ 0 2 n π α τ 0 2 ) ,
i DC = 1 8 RP 0 G ( β + γ + β γ J 0 2 ( a 0 V π π ) cos ( ϕ ) ) ,
V T ( t ) = 1 4 K TIA RP 0 G β γ J 0 2 ( a 0 V π π ) cos ( ϕ ) cos ( 4 π τ 0 α t + ω e τ 0 2 π α τ 0 2 ) ,
T e = T 2 τ 0 Δ f c ,
T = τ 0 + N T e 1 + Δ T 1 = τ 0 + Δ τ + N T e 2 + Δ T 2 ,
Δ T 2 Δ T 1 = N ( T e 1 T e 2 ) .
T e 1 T e 2 = T 2 Δ f c ( 1 τ 0 1 τ 0 + Δ τ ) Δ τ τ 0 T 2 Δ f c ( Δ τ τ 0 2 ) .
Δ τ = τ 0 T ( Δ T 2 Δ T 1 ) .
Δ τ min = τ 0 T ( Δ T 2 Δ T 1 ) min ,

Metrics